DLGLib

DLGLib

] COLLABORATORS
TITLE :
DLGLib
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

DLGLib i

Contents

1 DLGLib 1
1.1 DLGLIib.Doc e 1
1.2 PORTfunctions e e e e 2
1.3 USERfunctions e 4
1.4 dlglibrary/ActivatePort e e 5
1.5 dlglibrary/AddArea L e e e 6
1.6 dlg.library/AddStruct L e e e 6
1.7 dlglibrary/AFormat e e 7
1.8 dig.library/Age e e e e 8
1.9 dlglibrary/AmigaTime e 9
1.10 diglibrary/AppendFile e 9
111 dlglibrary/ArgParse e e e e e e e e e 10
1.12 dlglibrary/BCGet e e 11
1.13 diglibrary/BCMSg o o e e e 12
1.14 dlglibrary/BCPend e e e e 13
1.15 dlglibrary/BCResume e 13
1.16 dlglibrary/BinPos e 14
1.17 dlglibrary/BoolQuery e e e e e e 15
1.18 dlglibrary/BOrrowArea e e e e e e 16
1.19 dlglibrary/BroadCast e e 17
1.20 dlg.library/CallEditor o e e e e 18
1.21 dlglibrary/Capitalize e e 19
1.22 dlglibrary/Cat L e e e 19
1.23 dlglibrary/CD o e e 20
1.24 dlglibrary/ChainProgram L e 21
1.25 dlglibrary/CheckUSer o e e e e e e e e e e e 21
1.26 dlglibrary/ClearLine e 22
1.27 diglibrary/CloseGroup o v vt e e e e e e 23
1.28 dlglibrary/Clr e 23
1.29 dlglibrary/Copy e e 24

DLGLib iv
1.30 dlglibrary/CronEvent e e 25
1.31 dlglibrary/DB L 26
1.32 dlglibrary/DeActivatePort L 26
1.33 dlg.library/DelArea e e e e e e e e e e e e 27
1.34 dlglibrary/DelDir e 28
1.35 dlg.library/DeleteStruct e e e e e e e e e e e 28
1.36 dlglibrary/DeScore e e 29
1.37 dlg.library/DialogBatch L e e e 30
1.38 dlglibrary/DirSize e e 31
1.39 dlg.library/DispBuffer. e e e e 31
1.40 dlglibrary/DispForm e e e 33
141 dlglibrary/DispMSg o o o o e e e e e e e e e e e e e e 33
1.42 dlglibrary/DLGBinSearch e 35
1.43 dlglibrary/DLGGetSer o e e e e e e e e e e e 35
1.44 dlglibrary/DLGPatternMatch e 37
1.45 dlglibrary/DLGProtoStatus o o e e e e e e e e e e e 37
1.46 dlglibrary/DLGQUEIY e e e e 38
1.47 dlglibrary/DLGReleaseSer o o e e e e e 39
1.48 dlglibrary/DLGSearch 40
1.49 dlglibrary/Draw_Line e e e e e e e e e e 41
1.50 dlglibrary/EnterArea Lo L e e 41
1.51 dIglibrary/EXists e e e e e e e e e e 42
1.52 dlglibrary/ExistsGlobalArea e 43
1.53 diglibrary/FileCopy o o e e e e e e e e 43
1.54 dlglibrary/FileSize e 44
1.55 diglibrary/FreeArea. o e e e e e e e e 45
1.56 dlglibrary/FreeArealnfo 46
1.57 diglibrary/FreeMenu e e e e e e e e e 46
1.58 dlglibrary/FreePort e 47
1.59 dig.library/FreePortInfo e e e e 48
1.60 dlglibrary/FreeResource e 48
1.61 dig.library/FreeResReport e e e e 49
1.62 dlglibrary/GetArealnfo e 50
1.63 dlglibrary/GetChar e e e 50
1.64 dlglibrary/GetComment e 51
1.65 dlglibrary/GetComputerType L e 52
1.66 dlglibrary/GetDevName e 52
1.67 dlglibrary/GetFileDate e e 53
1.68 dlglibrary/GetFirstStruct L e 53

DLGLib v

1.69 dlglibrary/GetHiLowFPointers e e 54
1.70 dlg.library/GetHiLowPointers e e e e e e 55
1.71 dlglibrary/GetLang e 56
1.72 dlglibrary/GetLevel e e e e e e 56
1.73 dlglibrary/GetOrigin e e 57
1.74 dlglibrary/GetPath e e e e 58
1.75 dlglibrary/GetPortInfo 59
1.76 dlg.library/GetResReport e e 60
1.77 dlglibrary/GetStruct e e 61
1.78 dlg.library/HandleBCMsgs o e e e e e e e 62
1.79 dlglibrary/ImmedLockPort 62
1.80 dlg.library/ImportPublicMsg e e e e e 63
1.81 dlglibrary/Inform L e e 64
1.82 dlg.library/IntQuUery e e e e e e e e e e e 65
1.83 dlglibrary/KillMsg e e 66
1.84 dlg.library/LeaveArea e e e e e e e e e e e e e e e 67
1.85 dlglibrary/LiStAreas e e e e e e 67
1.86 dlg.library/ListPorts e e e e e 68
1.87 dlglibrary/ListSIGS 69
1.88 dlg.library/Loadlang e e e e e e e e e e 70
1.89 dlglibrary/LockArea L L 70
1.90 diglibrary/LockMenu e e e e e e e e e e 71
1.91 dlglibrary/LockPort L 72
1.92 dig.library/LockResource e e e e e e e 73
1.93 dlglibrary/LogOut e e 73
1.94 diglibrary/MDate e e e e e e e e 74
1.95 dlglibrary/More e e 75
1.96 dig.library/NextInGroup i i e e e e e e e e 76
1.97 dlglibrary/OpenGroup e e 76
1.98 dig.library/OverlayProgram e e e e e e e 77
1.99 dlglibrary/Pause L e e 78
1.100dIg.Jibrary/PrintSpace e e e e e e e e e 78
1.101dlg library/PurgeMenu L e e 79
1.102dlg dibrary/PutChar e e e 80
1.103dlg library/PutHiLowFPointers e 80
1.104dlg library/PutHiLowPointers e e 81
1.105dlg Jibrary/ReadArea L e 82
1.106dlgJibrary/ReadChar e e e 83

1.107dlg Jibrary/ReadRam e 83

DLGLib vi

1.108dlgJibrary/ReadUser e e 84
1.109dlg.library/ReceiveFile e e e 85
1.110dlgJibrary/ResourceMsg L e e e 86
L.111dlglibrary/ResumeTime 0o e e e e e e e e e e 86
1.112dlgJibrary/ScreenBuffer 87
1.113dlg.library/ScreenMSg e e e e e e e e e e e 88
1.114dlglibrary/ScreenPath 88
1.115dlglibrary/SDraw_Line e e e e e e e e e 89
1.116dlglibrary/SearchEnd e 89
1.117dlglibrary/SearchNext e e e e e e 90
1.118dlgdibrary/SearchStart 91
1.119dlg.library/SendBulletin L e e e e e e 91
1.120dlgdibrary/SendFile e 92
1.121dlglibrary/SendCtIMSg o e e e e e e e e 93
1.122dlgJibrary/SendPrivateMsg L e e 94
1.123dlg.library/SendPublicMsg L e e e e e 95
1.124dlgJibrary/SendRawMsg e 96
1.125dlg.library/SmartRename L e e e e e e e e e e 97
1.126dlg dibrary/SMDate e e e 98
1.127dlg library/Stricmp e e e e e e e e e e e 98
1.128dlg ibrary/StripPath 99
1.129dIg.library/StripSpaces o e e e e e e e e 100
1.130dlg library/Strnicmp L e e 100
1.131dIgibrary/Substitute e e e e e e e e e e 101
1.132dlg library/SuspendTime oL e 102
1.133dlg library/TBaud 102
1.134dlglibrary/TCheckCarrier e 103
1.135dIg.library/TColors o o e e e e e e e e e e e 103
1.136dlg library/TCont e 104
1.137dIg.library/TDevQUErY o o e e e e e e e e e e e e e 105
1.138dlglibrary/TFreeze e 105
1.139dIg.library/TGetSer e e e e e e e e 106
1.140dlg library/TGetTitle e 107
1.141dlg Jibrary/TimeUntilShutdown o e 107
1.142dlg library/TInTrans e e 108
1.143dlg library/TKill 0 0o 108
1.144dlg library/TOutTrans e 109
1.145dlg Jibrary/TransferPortLock L . e 110

1.146dlg library/TranslateBuffer o 110

DLGLib vii

1.147dlglibrary/TRecover e e 111
1.148dIg.library/TScreen o o o e e e e e e 112
1.149dlgJibrary/TSendBreak e 113
1.150dlg.library/TSetFlags e e e e e e 113
1151dlglibrary/TString o o e e e e e e 115
1.152dlg library/TTimeDelay e 115
1.153dlg dibrary/TTitle o e e 116
1.154dIg.library/TUnSetFlags e e e 117
1.155d1g library/TWindow e e e 117
1.156dlg.library/TWinHeight e e 118
1.157dlg.library/UnderScore oL e e e e e e e e 119
1.158dlg library/UnpackTimeo 119
1.159dlg library/Upper 120
1.160dlg library/WaitingMail L e 121
1.161dlg.library/WhenEvent e e e e e 121
1.162dlg.library/WriteEvent L e e e e 122
1.163dlg.library/WriteLog e e e 123
1.164dlg library/WriteRam L L 123
1.165dlg library/WriteUSer o e e 124
1.166dlglibrary/XAFPrintf 125
1.167dlg.library/XASPrintf L e e e e 126
1.168General STRUCTURE functions 0 ettt e e e e e e e 127
1.169Formatted I/O functions o e e e e 128
1.170Time Functions e e e 129
1.171File Manipulation Functions e 130
L.172LOGGING functions o o v v o et e e e e e 131
LIT3UTILITY functions o o o it i et e e e e e e e e e e e e e e e e e 131
[.I74ABROADCAST Functions o ittt ittt e e e e e e e e 132
TI75AREA functions 0 o o e e e e e e 132
LI76EXEC functions o o o e e e e 134
LI77SERIAL functions 0 o o e e e e e e 134
1.178RESOURCE functions o ot e e e e e e e 135
LITOAFPrintf() o o e e e e 135
LI80format.c e e e e 136
LABTASPrintf() o o e 137
1.182Using this guide L e e 138
LI83Distribution e e e 139
1.184Copyright 140
LABSCredits o o o e e e 140
LIBOCONIACES o o i e e e e e e e e e e 140

LA8TIndex o e 141

DLGLib 1/148

Chapter 1

DLGLib

1.1 DLGLib.Doc

$Id: DLGLib 1.3 1996/11/20 19:39:56 Jeff_ Grimmett Exp <
Jeff_ Grimmett $

As a developer of DLG utilities, this guide is designed to aid you in

creating programs to work well with DLG Pro. Library functions are arranged
in a manner similar to the SAS/C library guide for your convenience.

~Using~this~guide~~
~Distribution~~~~~~
~Copyright~~~~~r~~~
~Credits~~r~~~r~~~n~
~Contacts~~~~~~~~~
~Alphabetical~Index
The functions are arranged by category, for your convenience, and <+
an

alphabetical index is included for an alternative method of locating the
desired function.

~~~~~ PORT~functions
—— functions that address external ports.

~~~~~ USER~functions
—-— functions that manipulate user data

STRUCTURE~Functions
—— manipulate structured data items

~~~~~~ I/O0~functions
—— user I/0 functions

~~~~~ TIME~Functions


DLGLib

2/148

—-— functions related to time

~~~~~ FILE~Functions
—— functions that control file I/0

~~LOGGING~functions
—— functions for logging and informing

~~~STRING~functions
—— strings and other things

BROADCAST~Functions
—— Broadcast to and from ports/users

~~~~~ AREA~functions
—— Manipulation of file and message areas

~~~~~ EXEC~functions
—— call or use external programs

~~~SERIAL~functions
-— Control I/0 on the serial port

~RESOURCE~functions
—-— Misc resources and structures

Along with the above functions, please see
format.c
for routines that will
interface your program to DLG’s internal print routines.

1.2 PORT functions

Port functions relate to the activation, deactivation, and
management of
external data ports. It is through these ports that the users access the
BBS. Many of these functions are extremely low-level, so understanding of
them is essential.

~~~~ActivatePort ()
—-— Activate a port

~~DeActivatePort ()
—-— Deactivate a port

~~~~~~~~ FreePort ()
—-— Free a lock on a port

~~~~~~ GetDevName ()
—— Report the port application is running on

~~~~FreePortInfo ()
—— Free information about a port




DLGLib 3/148

~~~~~ GetPortInfo ()
—-— Get information about a port

~~~ImmedLockPort ()
—— Lock a port with an "immediate" lock

~~~~~~~ ListPorts ()
—-— Gets a list of active ports

~~~~~~~~ LockPort ()
—-— Lock a port

—— Log user out

~~~~~~~~~~~ TBaud ()
—— Set the baud rate for a port

~~~TCheckCarrier ()
—— Checks for the presence of a carrier

—— Change the colors for a port

~~~~~~~~~~~ TCont ()
—— Unfreeze a port

~~~~~~~ TDevQuery ()
—-— Get information about a port

~~~~~~~~~ TFreeze ()
-— Suspend all I/0 on a port

~~~~~~~~~ TGetSer ()
—-— Get serial information for a port

~~~~~~~ TGetTitle ()
-— Get teh screen/window title for a port

~~~~~~~~ TInTrans ()
—— Set the input translation table for a port
-— Kill a port

~~~~~~~ TOutTrans ()
—— Set the output translation table for a port

TransferPortLock ()
—— Change the lock on a port

~~~~~~~~ TRecover ()
—— Recover a killed port

~~~~~~~~~ TScreen ()
—— Open/close a screen for a port

DLGLib 4/148

~~~~~~ TSendBreak ()
—— Not currently implemented

~~~~~~~ TSetFlags ()
—-— Set handler flags

~~~~~~~~~ TString()
—-— Pretend a user typed a string

~~~~~~ TTimeDelay ()
—— Set the timeout delay for a port

~~~~~~~~~~ TTitle ()
—— Change the screen/window title for a port

~~~~~ TUnSetFlags ()
—— Unset handler flags

~~~~~~~~~ TWindow ()
-— Open/close a window on a port

~~~~~~ TWinHeight ()
—— Change the height of the window on a port

1.3 USER functions

These functions present you with ways to manipulate and read user <+
data
without going through the trouble of decyphering everything yourself. Most
of these functions are RELATIVELY harmess, except any user that you mess up
will of course be slightly upset about it...

~~~~~~~~~ AddArea ()
—— Append an area to user’s global area list

- Computer a user’s age

~~~~~~~ CheckUser ()
—— Check whether a user exists

~~~~~~ CloseGroup ()
- end access of a group

~~~~~~~~~ DelArea ()
—— Delete an area from user’s global area list

ExistsGlobalArea ()
—— Checks if area exists in user’s global area list

~GetComputerType ()
—— Get the name of a computer type

~~~~~~~~ GetLevel ()




DLGLib 5/148

—— Get the level of a user

~~~~~ NextInGroup ()
—— get the next name in a group

~~~~~~~ OpenGroup ()
—-— Open a group to be accessed

~~~~~~~~~ ReadRam ()
—-— Read user’s RAM_FILE structure

~~~~~~~~ ReadUser ()
—— Read a user’s USER_DATA and RAM _FILE structures

~~~~~~~~ WriteRam()
-— Write a user’s RAM_FILE structure

~~~~~~~ WriteUser ()
—— Write a user’s USER_DATA structure

1.4 dlg.library/ActivatePort

NAME
ActivatePort -- Activate a port
SYNOPSIS
result = ActivatePort (port,bgcommand)

A0 Al
LONG ActivatePort (char =*,char x)

FUNCTION
Activates a port for use with the resource manager. A port must
be activated before other calls (such as locking or freeing the
port) can be made.

INPUTS
port —— Three-character port name
bgcommand —- Command to be run whenever the port becomes free, or
"" for no background command.
RESULT

The result is an error message (see resman.h for #defines).

EXAMPLE
result = Activateport ("TRO", "DLG:Setup TRO");

NOTES
BUGS
SEE ALSO

DeActivatePort ()




DLGLib 6/148

1.5 dig.library/AddArea

NAME
AddArea —- Append an Area to one of the global area files
SYNOPSIS
result = AddArea (path, area)
AQ DO

BOOL AddArea (char =%, USHORT)

FUNCTION
Appends an Area to one of the global area files. The global area
files are in the user’s directory and contain an area list of
short intergers. These are the GlobalAreas.file, GlobalAreas.msg

and GlobalAreas.archive.

If the global area file doesn’t exist, it is created. No
checking is done to see if the area already exists in the global
area file.

INPUTS
path —— Complete path and filename of the global area file
area —— Area number to be appended.

RESULT

TRUE area successfully appended
FALSE area not appended

EXAMPLE
result = AddArea ("User:Joe_Smith/GlobalAreas.msg", 10);

NOTES

BUGS

SEE ALSO
DelArea()
14
ExistsGlobalArea ()

1.6 dlg.library/AddStruct

NAME
AddStruct -- Add a structure to a file
SYNOPSIS
result = AddStruct (filename, structptr, structsize,fieldsize)
A0 Al DO D1

LONG AddStruct (char =*,char x,USHORT,USHORT)

FUNCTION




DLGLib

7/148

Adds a structure to a sorted file on disk,

structure if it already exists.

or replaces the

If the file

for sorting. This

INPUTS
filename —-— Filename to place structure in.
doesn’t exist, it will be created.
structptr -- Pointer to structure.
structsize —-- Size of structure.
fieldsize —- Size of keyfield (lst field)
field must be a string.
RESULT

-1 if operation failed
0 1if structure was replaced
1 if structure was added

EXAMPLE
result =

(already existed)

AddStruct ("Structures.dat",mystructure,

sizeof (smystructure),10);

NOTES
Common mistake #426:
first field of the structure!

the correct length of the string,
size of the structure element.

BUGS
SEE ALSO
DeleteStruct ()

14

GetStruct ()

4

GetFirstStruct ()

1.7 dig.library/AFormat

NAME
AFormat —- Low level I/O routine
SYNOPSIS
result =

AQ Al A2

FUNCTION

Does standard ’"C’-style formatting.

not called directly.

INPUTS

do not use strlen()
strlen()
string UP TO THE TERMINATING NULL

to determine the size of the

only returns the length of the
(\0) in the string! Either specify
or use another method to find the

AFormat (User,data, putsub, fmt, argp)
DO
LONG AFormat (struct USER_DATA *,void =*,int

A3
(#putsub) (), char x,char x)

This function is generally




DLGLib

User —-— Optional USER_DATA structure (used for ansi color).

data —-— Data that gets passed through to putsub() .

putsub —-- Function to be called to output a character. This
fuction takes two arguments —-- the character to be

output, and a pointer to the data being passed through.

fmt —-— Format tring containing text and switches (see any
printf () documentation for examples of the switches).

argp —— Pointer to a memory area (usually the stack) that
contains the arguments to the formatting statements.
Note that all arguments must be long values.

RESULT
The result is the number of characters output.

EXAMPLE

NOTES
Compatiable with most printf () format strings. If the User
structure is passed, the format string may include DLG %a and %b
color codes. There is no floating point support nor is %x
formatting supported.

BUGS
When using format.c’s AFPrintf () or ASPrintf () to interface to
this function, all arguments are converted to LONGs. A format of

"$hd" should not be used and will cause invalid results, use "%d"
instead. If you call this function directly, you should use "$hd"
for SHORTs and will get the proper results.

SEE ALSO
XAFPrintf ()

14

XASPrintf ()

1.8 dlg.library/Age

NAME

Age ——- Compute a person’s age
SYNOPSIS

result = Age (year,month,day)

DO D1 D2
LONG Age (SHORT, SHORT, SHORT)

FUNCTION
Computes an age based on a birth year, month, day, and the
current date.

INPUTS
year —- Year the person was born.




DLGLib 9/148

month —-- Month the person was born (January = 0).
day —— Day the person was born.
RESULT

The person’s age, in years.

EXAMPLE
age = Age(1969,10,21);

NOTES
BUGS

SEE ALSO

1.9 dig.library/AmigaTime

NAME
AmigaTime —-- Get the current time

SYNOPSIS
result = AmigaTime ()

ULONG AmigaTime (void)
FUNCTION

Get the current system time, in seconds elapsed since midnight,
January 1, 1978.

INPUTS
RESULT
The time
EXAMPLE
secs = AmigaTime () ;
NOTES
BUGS
SEE ALSO
UnpackTime ()
14
MDate ()
4
SMDate ()

1.10 dlg.library/AppendFile




DLGLib 10/148
NAME
AppendFile —-—- Append a timestamped line to a file
SYNOPSIS
result = AppendFile (filename,buffer)

AQ Al
LONG AppendFile (char =,char =)

FUNCTION
Appends a string to a file, preceded by a timestamp.

INPUTS
filename -- File to append line to.
buffer —— Buffer to be written.
RESULT

-1 if operation failed
0 if operation was successful

EXAMPLE
result = AppendFile ("MyLogFile","Something important happened");

NOTES
BUGS

SEE ALSO

1.11 dlg.library/ArgParse

NAME

ArgParse —-- Parse a string into an array of words
SYNOPSIS

result = ArgParse(string,argarray,maxnum)

AQ Al DO
LONG ArgParse(char =*,char *x,UBYTE)

FUNCTION
Parses a string into an array of words.

INPUTS
string —-— String to be parsed
argarray —-— Array of char pointers. Each will be set to point to
a word, with the last being set to NULL. The array
should have at least one more than ’'maxnum’ char
pointers allocated.
maxnum —-— Maximum number of arguments to be parsed.
RESULT

The number of arguments parsed.




DLGLib 11/148

EXAMPLE
numargs = ArgParse ("Argl Arg2 Arg3",MyArgs,4);

NOTES
This function actually CHANGES the original string (ala strtok()), so
if you want to preserve the original contents of your string, either
operate on a copy of it or make a copy for safekeeping.

ArgParse does not clear out the char array it is pointed to between
invocations, so there may be residual words in any unused parts of the
array from one invocation to the next. The ONLY legitimate way to know
how many arguments were parsed is to read the return value from the

function.

The results of ArgParse can best be regarded as analogous to *xargv
and argc usage in normal C programming.

BUGS

SEE ALSO

1.12 dlg.library/BCGet

NAME
BCGet —- Get a BroadCast message from the resource manager
SYNOPSIS
result = BCGet (port,buffer)
AO Al

LONG BCGet (char *,char =)

FUNCTION
Gets a pending BroadCast message from the resource manager if one
is available.

INPUTS
port —-— Port the application is running on.
buffer —- Buffer to place the message in (should have room for 80
characters plus null termination).
RESULT

Error message as define in broadcast.h.

EXAMPLE
while (BCGet (port,buf)==BCNOERR) printf ("Message is [%s]\n",buf);

NOTES
BUGS
SEE ALSO

HandleBCMsgs ()




DLGLib 12/148

4

BCPend ()

4

BCResume ()

14

BCMsg ()

1.13 dig.library/BCMsg

NAME
BCMsg —- Low-level broadcast routine
SYNOPSIS
result = BCMsg (ports,buffer,type, flags)
AQ Al DO D1

LONG BCMsg (char =*,char «,UBYTE,UBYTE)

FUNCTION
Routine used by all other broadcast functions to send messages to
the BroadCast Manager. Should not be called directly.

INPUTS
ports —- String containing list of ports to be affected
(example "TROTR1ITLO") .
buffer —— Buffer to be broadcast, or filled in (
BCGet
) .
type -— Type of message (see broadcast.h for #defines).
flags —- Misc. flags (see broadcast.h for #defines).
RESULT

Error message as defined in broadcast.h.

EXAMPLE

NOTES

BUGS

SEE ALSO
BroadCast ()
14
BCPend ()
14
BCResume ()
14
BCGet ()

4

HandleBCMsgs ()




DLGLib 13/148

1.14 dig.library/BCPend

NAME
BCPend —-- Pend automatic printing of BroadCast messages
SYNOPSIS
result = BCPend (port)
\0)

LONG BCPend (char x)

FUNCTION

Suspends the automatic printing of BroadCast messages on a port
by the BroadCast Manager. Messages should be suspended by
applications that don’t wish to be interrupted by messages or
that wish to handle messages internally (using

BCGet ()

) .
Applications that suspend messages should always make sure to
resume printing when they exit (using

BCResume ()
) .
INPUTS
port —-— Port to suspend messages on.
RESULT

Error messgage as defined in broadcast.h.

EXAMPLE
error = BCPend("TRO");

NOTES

BUGS

SEE ALSO
BCResume ()
14
BCGet ()
14
HandleBCMsgs ()
14
BroadCast ()
14
BCMsg ()

1.15 dlg.library/BCResume

NAME
BCResume —- Resume printing of BroadCast messages

SYNOPSIS
result = BCResume (port)




DLGLib 14/148

AQ
LONG BCResume (char =)

FUNCTION

Resumes the printing of BroadCast messages on a port by the resource
manager.

INPUTS
port —-— Port to resume messages on.

RESULT
Error message as define in broadcast.h.

EXAMPLE
error = BCResume ("TRO") ;

NOTES

BUGS

SEE ALSO
BCPend ()
4
BCGet ()
14
HandleBCMsgs ()
14
BroadCast ()
14
BCMsqg ()

1.16 dig.library/BinPos

NAME
BinPos —-— Binary search for a structure in a file
SYNOPSIS
result = BinPos(fh,filesize,structptr,structsize, fieldsize, returnptr)

A0 DO Al D1 D2 A2
LONG BinPos (BPTR, ULONG, char =*,USHORT,USHORT,ULONG x)

FUNCTION
Carries out a binary search for a structure in a file on disk.

INPUTS
th —— AmigaDOS filehandle to search in.
filesize - Size of the file.
structptr -- Pointer to structure to search for. The keyfield

must be filled in.

structsize —-- Size of structure.




DLGLib 15/148

fieldsize -- Size of keyfield (1lst field of structure).
Keyfield must be a string.

returnptr —- Pointer to return file position in.
RESULT
<0 if structure should fit before ’*returnptr’ in file
0 if structure should replace structure at ’+*returnptr’ in file
>0 if structure should fit after ’xreturnptr’ in file

The contents of ’'returnptr’ are modified to give a reference point.

EXAMPLE
result = BinPos (MyFileHandle,size,MyStruct,sizeof (xMyStruct), 10, &ptr);

NOTES
BUGS

SEE ALSO

1.17 dlg.library/BoolQuery

NAME
BoolQuery —-- Ask a (Y/N) question
SYNOPSIS
result = BoolQuery(query, opt,ui)
A0 DO Al

BOOL BoolQuery (char »,UBYTE,struct UserInfo x)

FUNCTION
To get a (Y/N) response from the user.

INPUTS
query —— String containing a question to ask (the "(Y/n)" or
"(y/N)" is supplied by the routine).
opt —-— Default response (TRUE=yes, FALSE=no).
ui —-— UserInfo structure as defined in input.h
RESULT

TRUE if user responds ’yes’
FALSE if user reponds ’'no’

EXAMPLE
yesno = BoolQuery ("Yes or No?",TRUE,MyUserInfo);

NOTES
BUGS

SEE ALSO




DLGLib

16/ 148

DLGQuery ()

4

IntQuery ()

1.18 dig.library/BorrowArea

NAME
BorrowArea —- Lock an area for a short period of time
SYNOPSIS
result = BorrowArea (area,passwd, reason,pri, flags)

DO A0 Al D1 D2
LONG BorrowArea (USHORT, char =x,char =*,char,UBYTE)

FUNCTION
Locks an area, but should only be used if the area will be locked
for a very short period of time (a few seconds at most).

INPUTS
area —— Number of the area to be locked.
passwd —- Password to lock area with.
reason ——- Reason the area is being locked.
pri —-— Priority for lock (=127 to 128).
flags —-- As defined in resman.h.

RESULT

Error message as defined in resman.h.

EXAMPLE
result - BorrowArea (20, "MyPasswd", "Doing something", 0, MSGLOCK) ;

NOTES
An area should be entered (
EnterAreal()
) before BorrowArea 1is used
and the area must be released using FreeArea.

An application is allowed to borrow an area even if there are
other users (

EnterArea ()

) in the area.

Once an Area has been borrowed, all other BorrowArea calls will
wait until the area is freed. Pending BorrowAreas will be

honored on a First-In, First-Out basis.

Consider BorrowArea () /

FreeArea ()
like the Amiga executive
functions Forbid() /Permit (). Use BorrowArea () /

FreeArea ()




DLGLib 17 /148

_only__
for short term locks. Otherwise, users might think that the BBS
has locked up.

Never try to BorrowArea () the same area without doing a

FreeArea ()

between the BorrowAreas. Your program (and port) will
hang.

All of the DLG.Library functions that deal with message and file
areas do their own BorrowArea/FreeArea, so you _must_ have freed
the area before using them.

BUGS

SEE ALSO
LockArea ()
14
FreeArea ()
14
EnterArea ()
4
LeaveArea ()

1.19 dlg.library/BroadCast

NAME
BroadCast —-—- BroadCast a message
SYNOPSIS
result = BroadCast (ports,buffer, flags)
AQ Al DO

LONG BroadCast (char x,char *,UBYTE)

FUNCTION
BroadCast a message to port(s) using the BroadCast Manager.

INPUTS
ports —-- String containing a list of ports to broadcast to
(example - "TROTRITLO").
buffer —- String to be broadcast (max 68 characters).
flags —-—- Misc. flags (see broadcast.h for #defines).
RESULT

Error message as defined in broadcast.h.

EXAMPLE
error = BroadCast ("TROTLO", "Hi there");

NOTES




DLGLib 18/ 148

BUGS

SEE ALSO
BCPend ()
14
BCResume ()
4
BCGet ()
14
HandleBCMsgs ()
14
BCMsg ()

1.20 dig.library/CallEditor

NAME
CallEditor —- Calls the User’s editor and edit a file
SYNOPSIS
result = CallEditor (reply, header, body, type, user, ram, port)

AQ Al A2 DO A3 D1 D2
LONG CallkEditor (char %, char =, char =*, char, struct USER_DATA x, struct
Ram_File %, char x)

FUNCTION
Call the User’s selected editor to edit a file

INPUTS
reply —-—- Reply Message Path/FileName or NULL if not a reply
header -- FidoNet Message header Path/FileName or NULL if not a
fidonet message
body —-— Message body file
type —-— Message type (see msg.h)
user —— Address of the USER_DATA structure
ram —— Address of the Ram_File structure
port —— DLG Port that the application is running on
RESULT
0 = successful
-1 = unsuccessful (user aborted, editor not found)
EXAMPLE
NOTES

If the User’s editor is invalid or is no longer valid for the
user then the default is to use DLG:LineEdit.

Handles the execution of a local editor if on a local port and




DLGLib 19/148

DLGConfig:Batch/LocExtEditor exists.
Screens the resulting body file for bad language.
BUGS

SEE ALSO

1.21 dig.library/Capitalize

NAME
Capitalize —-- Capitalize a string
SYNOPSIS
Capitalize (string)

A0
void Capitalize (char x)

FUNCTION
Capitalizes a string (makes the first character of each word a

capital letter).

INPUTS
string —-—- String to be capitalized.

RESULT
none

EXAMPLE
Capitalize ("capitalize this");

NOTES
BUGS
SEE ALSO

Upper ()

1.22 dlg.library/Cat

NAME
Cat —-- To concantenate two files together
SYNOPSIS
result = Cat(filel, file2, joiner)
AQ DO Al

long Cat (char %, char x, char x)

FUNCTION
To concantentate two files together. File2 is appended to Filel and
the two files can be (optionally) seperated by the joiner string. If




DLGLib 20/148

Filel doesn’t exist, it is created. 1If File2 doesn’t exist an error
is returned.

INPUTS
filel -- Path of file to be appended to.
file2 —-- Path of file to append.
joiner —-- Optional string that seperates the two files (NULL if not
used) .
RESULT

total number of bytes added to filel.

EXAMPLE
size += Cat (msgbody, sigfile, "\015");

NOTES
BUGS
SEE ALSO
AppendFile ()
14
Copy ()
14
FileCopy ()

1.23 dig.library/CD

NAME

CD —-- Change Directory
SYNOPSIS

result = CD(directory)

AQ
BOOL CD (char «)

FUNCTION
To change the default directory of the current CLI.

INPUTS
directory —-- directory path

RESULT
TRUE 1if successful

FALSE if unsuccessful

EXAMPLE
result = CD("File:");

NOTES

BUGS




DLGLib 21/148

SEE ALSO

1.24 dig.library/ChainProgram

NAME
ChainProgram —-- Sets up DLG to execute another program
SYNOPSIS
result = ChainProgram(program, port)

A0 Al
BOOL ChainProgram(char =%, char x)

FUNCTION
Sets up DLG to execute another program when the current program exits.

INPUTS
program —- full path and filename of program to execute
port —-— DLG Port (should be 4 characters) that the program
is running on.
RESULT

TRUE if successful
FALSE if unsuccessful

EXAMPLE
ChainProgram ("DLG:Menu", port);
Closelibrary (DLGBase) ;
exit (0);

NOTES
ChainProgram sets up DLG to execute another program after the current
program exits. Generally, it should be used as shown above. If the
current program was overlayed (and not chained), then when the current
program ends it will return to the program that overlayed it and
(generally) the chain request will be ignored.

When the current program ends, the new program will be run using the
existing CLI. 1If there is a resident version of the program it will
be used and any path will be ignored.

BUGS

SEE ALSO

OverlayProgram ()

1.25 dig.library/CheckUser

NAME
CheckUser ——- Check whether a user exists




DLGLib 22/148

SYNOPSIS
result = CheckUser (name)
A0
LONG CheckUser (char x)

FUNCTION
Checks whether a user has an account on the system.

INPUTS
name —-- Name to be checked.

RESULT

1 if user has an account on the system

2 if a group exists by the specified name

0 1f neither a user nor a group exists by the specified name
EXAMPLE

if (!CheckUser (UserName) )

printf ("User or group [%s] doesn’t exist\n",UserName);

NOTES
BUGS

SEE ALSO

1.26 dlg.library/ClearLine

NAME
ClearLine ——- Flushes all characters from the input line.

SYNOPSIS
ClearLine ()

void ClearLine (void)
FUNCTION
Waits for 4/10 of a second with no data on the input line.

Any data read is flushed.

INPUTS
none.

RESULT
none

EXAMPLE
ClearLine () ;

NOTES

BUGS




DLGLib

23/148

SEE ALSO

1.27 dig.library/CloseGroup

NAME
CloseGroup —- End access of a group
SYNOPSIS
CloseGroup (fh)

AQ
void CloseGroup (BPTR)

FUNCTION
Ends access of a group that has been opened with
OpenGroup ()
INPUTS
fh -- AmigaDOS FileHandle returned by
OpenGroup ()
RESULT
none
EXAMPLE

CloseGroup (fh);

NOTES

BUGS

SEE ALSO
OpenGroup ()
4
NextInGroup ()

1.28 dlg.library/Cir

NAME
Clr —— Clear the screen

SYNOPSIS
Clr (ansi)
DO
void Clr (UBYTE)

FUNCTION
Clears the user’s screen (or prints two spaces if the user has screen
clears turned off).




DLGLib 24/148

INPUTS
ansi —-- User’s ANSI settings.

RESULT
none

EXAMPLE
Clr (User.Ansi_Flagqg);

NOTES
BUGS

SEE ALSO

1.29 dig.library/Copy

NAME
Copy —-- Copies one file to another

SYNOPSIS
Copy (source, dest)
AQ Al
long Copy (char %, char x)

FUNCTION
Copies all of a file into another file. Should the destation drive
become full during the copy and the DLGConfig:Batch/DriveIsFull.batch
exists, it will be executed.

INPUTS
source —— Full Path/Name of source file.
dest —— Full Path/Name of destation file.
RESULT
2 = Can’t open destation file
1 = Can’t open source file
0 = successful

-1 = output drive is full

EXAMPLE
Copy ("T:Filel", "T:File2");

NOTES
BUGS
SEE ALSO
FileCopy ()

4
SmartRename ()




DLGLib 25/148

1.30 dig.library/CronEvent

NAME
CronEvent —-- Send message to TPTCron
SYNOPSIS
result = CronEvent (messtype, time, command)
DO D1 AQ

LONG CronEvent (UBYTE, ULONG, char «)

FUNCTION
Sends a message to TPTCron

INPUTS

messtype —-—- One of the following values, as defined in cron.h:
#define ADDEVENT 1 —-- Add an event
#define DELEVENT 2 —-— Delete an event
#define LISTEVENTS 3 —- List the dynamic event list
#define CRONEXIT 4 —- Shut down TPTCron
#define WHENEVENT 5 —— Query next occurrance of event
#define READFILE 6 ——- Read a crontab file
#define TABLIST 7 —-— List the permanent event list
#define CHANGEDIR 8 —- Change TPTCron’s current

directory

time —— Time for event to be added (for ADDEVENT call), in minutes
from current time.

command —- Command to be added for ADDEVENT call.
Command to be deleted (x and ? wildcards supported) for a
DELEVENT call.
Command to be queried (x and ? wildcards supported) for a
WHENEVENT call.
Crontab file to be read for a READFILE command.
New directory for a CHANGEDIR call.

RESULT

Most commands return the following errors, as defined in cron.h:

#define CNOERR 0 —— Success

#define OUTOFMEM -1 -— Out of memory error

#define BADSYNTAX =2 —— Invalid arguments

#define NOCRON -3 —— TPTCron not currently active
#define TABNOTFOUND -4 —— Crontab file not found (READFILE)
#define NOEVENTS -5 —-— No events to list (LISTEVENTS)
#define DIRNOTFOUND -6 —— Directory not found (CHANGEDIR)

The DELEVENT command returns the number of events deleted.

The WHENEVENT command returns the number of minutes until the first
match.




DLGLib 26/148

EXAMPLE
NOTES
BUGS
SEE ALSO

WhenEvent ()

1.31 dig.library/DB

NAME

DB —-- Output a debugging string
SYNOPSIS

result = DB(string)

A0
BOOL DB (char =x)

FUNCTION
Outputs a datestamped debugging string to standard output and waits

for a second.

INPUTS
string -- String to be output.

RESULT
TRUE

EXAMPLE
DB ("Some debugging");

NOTES
BUGS

SEE ALSO

1.32 dig.library/DeActivatePort

NAME
DeActivatePort —-- Deactivate a port
SYNOPSIS
result = DeActivatePort (port,passwd)

A0 Al
LONG DeActivatePort (char =*,char =)

FUNCTION
Removes a port from resource management.




DLGLib 27/148

INPUTS
port —-— Three-character port name.
passwd —- Password to lock port with (the port must be locked before it
is deactivated to ensure that nobody else is using it).
RESULT

The result is an error message (see resman.h for #defines).

EXAMPLE
result = DeactivatePort ("TRO", "Deactivating");

NOTES
BUGS
SEE ALSO

ActivatePort ()

1.33 dlg.library/DelArea

NAME
DelArea —-- Delete an Area from one of the global area files
SYNOPSIS
result = DelArea(path, area)
AQ DO

BOOL DelArea (char %, USHORT)

FUNCTION
Delete an Area from one of the global area files. The global area
files are in the user’s directory and contain an area list of short
intergers. These are the GlobalAreas.file, GlobalAreas.msg and
GlobalAreas.archive.

The area is deleted from the list for every occurance.

INPUTS
path ——- Complete path and filename of the global area file
area —-- Area number to be deleted.

RESULT

TRUE area successfully deleted
FALSE area not deleted (not found, file doesn’t exist)

EXAMPLE
result = DelArea ("User:Joe_Smith/GlobalAreas.msg", 10);
NOTES

BUGS




DLGLib 28/148

SEE ALSO

AddArea ()

1.34 dlg.library/DelDir

NAME
DelDir —-- Delete a directory, all of it’s files and any
subdirectories and their files.

SYNOPSIS
result = DelDir (path, user)
A0 Al
BOOL DelDir (char %, struct USER_DATA =x)

FUNCTION
Deletes a directory and all of it’s files and any subdirectories
and their files. Can optionally print progress and success

failure messages to the current CLI output device.

INPUTS
path —- Complete path and filename of the directory to delete
user —- Address of the USER_DATA structure (optional) if
message printing is required.
RESULT

TRUE directory successfully deleted
FALSE directory not deleted (not found, protected files, etc)

EXAMPLE
result = DelDir ("User:Joe_Smith", &User); // Output progress to user
result = DelDir ("User:Joe_Smith", NULL); // No output to user

NOTES

BUGS

SEE ALSO

DirSize ()

1.35 dig.library/DeleteStruct

NAME
DeleteStruct —-—- Delete a structure from a file
SYNOPSIS
result = DeleteStruct (filename, structptr,structsize, fieldsize)

A0 Al DO D1
LONG DeleteStruct (char x,char %,USHORT,USHORT)




DLGLib

29/148

FUNCTION
Deletes a structure from a sorted file on disk.

INPUTS
filename - Filename to delete structure from. If the structure is
the last in the file, the file will be deleted.
structptr —-- Pointer to structure. Only the keyfield need be filled
in.
structsize —-- Size of structure.
fieldsize —-- Size of keyfield (1lst field) for sorting. This field
MUST be a string.
RESULT

-1 if operation failed
0 if operation was successful

EXAMPLE
result = DeleteStruct ("Structures.dat",mystructure,
sizeof (smystructure),10);
NOTES

Common mistake #426: do not use strlen() to determine the size of the
first field of the structure! strlen() only returns the length of the

string UP TO THE TERMINATING NULL (\0) in the string!

Either specify

the correct length of the string, or use another method to find the

size of the structure element.

BUGS
SEE ALSO
AddStruct ()
14
GetStruct ()
14
GetFirstStruct ()

1.36 dig.library/DeScore

NAME
DeScore —- De—underscores a string
SYNOPSIS
DeScore (string)

A0
void DeScore (char *)

FUNCTION

Replaces all underscore characters ’'_’ with spaces in a string.
for converting a user’s directory name into a username.

INPUTS

Useful




DLGLib 30/148

string -- String to be descored.

RESULT
none

EXAMPLE
DeScore ("John_Doe") ;

NOTES
BUGS
SEE ALSO

UnderScore ()

1.37 dig.library/DialogBatch

NAME

DialogBatch —-- Execute a DLG batch file
SYNOPSIS

result = DialogBatch (path, User, Ram, Port)

AQ Al A2 A3
BOOL DialogBatch (char %, struct USER_DATA x, struct Ram_File *, char x)

FUNCTION
Executes a DLGBatch file.

INPUTS
path —— Full path and filename of DLG batchfile to execute
User —-—- USER_DATA structure.
Ram —-- Ram_File structure of the user.
port —- DLG Port (should be 4 characters) that the program
is running on.
RESULT

TRUE if successful
FALSE if batch file not found

EXAMPLE
DialogBatch ("DLGConfig:Batch/Login.DLGBatch", User, Ram, Port);

NOTES
BUGS

SEE ALSO




DLGLib 31/148

1.38 dig.library/DirSize

NAME
DirSize —-- Returns the number of bytes in the directory.
SYNOPSIS
result = DelDir (path)
\0)

LONG DirSize (char =)

FUNCTION
Returns the number of bytes used by the directory. It accounts for
all files and subdirectories and their files. It also accounts for

the directory entry required for each file and/or subdirectory.

INPUTS
path —— Complete path and filename of the directory

RESULT
size of the directory

EXAMPLE
result = DirSize ("User:Joe_Smith");

NOTES
BUGS
SEE ALSO

DelDir ()

1.39 dig.library/DispBuffer

NAME
DispBuffer —-- Display a buffer to the user
SYNOPSIS
result = DispBuffer (fh,buffer, screenpos, indent,
DO AOQ Al D1
ibuf, header, breakbuf, User)
A2 D2 A3 D3

LONG DispBuffer (BPTR, char #,USHORT =x,USHORT,char x,
USHORT, char #*,struct USER_DATA )

FUNCTION
Displays a buffer to the user, formatted to their user settings. This
routine will do word-wrap according to the user’s screen width, will
display more prompts at the appropriate places, and will even scroll
the contents of the buffer leaving a specified number of lines at the
top as a header.

INPUTS




DLGLib 32/148

th —— AmigaDOS FileHandle to send output to.

buffer —-— Buffer to be displayed. The buffer must be null
terminated.

screenpos —-- Address of an unsigned, short wvalue that contains the
current row output is at on the user’s screen. This

variable will be updated to hold the new row after the
display has ended.

indent —— Optional number of characters to indent each line (except
the first).
ibuf —-— Optional buffer (use NULL for no buffer) to print instead

of spaces for indenting. For example, an ’indent’ of 3
and an ’"ibuf’ of " > " would be good for displaying the
buffer as a gquote for a message.

header —— Number of lines to be left at the top of the screen as a
header. This number of lines will always stay the same, as
the rest of the buffer scrolls or pages beneath.

breakbuf -- Buffer containing characters that, if received as input
during the display, will cause the display to terminate.
Usually, you want to have at least ~C "\003", and you
might want other characters as well. For example, when
DispBuffer () is used to display DLG menus, all of the
letters for the current menu options are placed in the
break buffer to allow for hotkeying during menu display.

User —-— USER_DATA structure.
RESULT
Character used to break the display, if one of the ’'breakbuf’
characters was typed
0 1if entire buffer was displayed
-1 if output was stopped because user responded ’'no’ to a 'more’ prompt
-2 1f entire buffer was displayed after user responed "=’ to a 'more’
prompt

"screenpos’ 1s updated to reflect the new screen position.

EXAMPLE
DispBuffer (Output () ,MyBuf, &screenpos, 0, NULL, 0, "\003", User) ;

NOTES
BUGS
SEE ALSO
DispForm()

4

DispMsg ()




DLGLib 33/148

1.40 dig.library/DispForm

NAME
DispForm —- Display a file with DLG’s ’%’ switches
SYNOPSIS
result = DispForm(filename,DispUser, Trans, Ram,port)
A0 Al A2 A3 DO

BOOL DispForm(char =,struct USER_DATA «,struct USER_DATA «x,
struct Ram_File x,char x)

FUNCTION
Displays a file, interpreting DLG’s ’%’ switches in the process.

DispBuffer ()
is used to do the main display job.

INPUTS
filename -- File to be displayed.
DispUser —-- USER_DATA structure of the user that is seeing the display.
Trans —— USER_DATA structure to be used for translating ’'%’

switches.

Ram —-— Ram_File structure of the user that is seeing the display.
port —-— Port the user is on.

RESULT

-1 if file couldn’t be opened
Otherwise, the result of the call to
DispBuffer ()
is returned

EXAMPLE
DispForm ("MyFile.txt",User,User,Ram, "TRO");

NOTES

BUGS

SEE ALSO
DispBuffer ()
14
DispMsg ()

1.41 dig.library/DispMsg

NAME
DispMsg —- Displays the text of a message




DLGLib

34/148

SYNOPSTIS
result = DispMsg (md,User)
A0 Al
LONG DispMsg (struct MsgDisplay =*,struct USER_DATA x)

FUNCTION
Displays the text of a message, ignores Kludge lines and does
message quoting highlighting.

INPUTS
md —-- MsgDisplay structure. The format of this structure is
(from msg.h) :

USHORT area —— Number of area the message is in.

char xtransarray -- Translation matrix (or NULL).

char xpasswd —-— Password to lock message area with.

char xfilename —— Name of file containing message.

USHORT *screenpos —— Address of an unsigned short containing the
current screen position

LONG findex —-— Offset from the beginning of the message file
that the text begins (used to skip message
header). This should be 190 for a standard DLG
message, or, optionally (and better for future
upgrades), use sizeof (struct Msg_Header) .

char xbreakbuf —— Break buffer to be passed to

DispBuffer ()
ULONG flags —-— MSG_STRIPSB 1if you want ’seen-by’ lines
stripped
MSG_MSGAREA 1if displaying from a Message Area
MSG_FILEAREA if displaying from a File Area
User ——- USER_DATA structure.
RESULT

-1 if file couldn’t be opened
Otherwise, the result of the call to
DispBuffer ()
is returned

EXAMPLE

NOTES
Do not set MSG_STRIPSB unless in an Echo area, otherwise the
message may not display.

Assumes the size of the message header is 6 lines.

BUGS




DLGLib 35/148

SEE ALSO
DispBuffer ()

4

DispForm()

1.42 dlg.library/DLGBinSearch

NAME
DLGBinSearch —-- Search for a structure in a sorted array
SYNOPSIS
result = DLGBinSearch (array,structptr,structsize, fieldsize,elements)

A0 Al DO D1 D2
char *DLGBinSearch (char *,char *,USHORT,USHORT,USHORT)

FUNCTION
Searches for a structure in a sorted array.

INPUTS
array —— Pointer to memory block to be searched.
structptr -- Pointer to structure to find (keyfield must be filled
in) . This can just be a pointer to the keyfield, it need
not be the entire structure.
structsize -- Size of structure.
fieldsize —- Length of keyfield (1st field). This field must be a
string, and the array of structures must be sorted by
the keyfield.
elements —— Number of structures in the array.
RESULT
Pointer to structure, if found, otherwise NULL. Note that the pointer

is to the actual structure in the array, not a copy of it.

EXAMPLE
mystruct = DLGBinSearch (structures, "Keyfield",sizeof (xmystruct),20,32);
if (!mystruct) printf ("Couldn’t find it\n");

NOTES

BUGS

SEE ALSO

DLGSearch ()

1.43 dlg.library/DLGGetSer




DLGLib 36/148

NAME
DLGGetSer —- Take control of the serial.device for a port
SYNOPSIS
result = DLGGetSer (port,protocol)
AQ DO

struct DLGSerInfo *DLGGetSer (char =*,char)

FUNCTION
Allows an application to take direct control of the serial.device for a
port in order to do a file transfer.

INPUTS

port —-— Port to be used.

protocol —-- Single character name of protocol.
RESULT

DLGSerInfo structure, or NULL if operation failed. The structure is as
follows (as defined in dlgproto.h):

char port[4] —— The port being used.

struct IOExtSer =read —— The IO message for reading.

struct IOExtSer *write —— The IO message for writing.

struct MsgPort xreadbak —-- Backup copy of message port for reading

(shouldn’t be touched by application).

struct MsgPort *writebak —-- Backup copy of message port for writing
(shouldn’t be touched by application).

char titlebak[71] —— Backup copy of screen/window title
(shouldn’t be touched by application).

char title[71] —— New title to be used (shouldn’t be
touched by application).

unsigned char flags —— Not currently used.

EXAMPLE
serinfo = DLGGetSer ("TRO","X");

NOTES
BUGS
SEE ALSO
DLGReleaseSer ()

4

DLGProtoStatus ()




DLGLib 37/148

1.44 dig.library/DLGPatternMatch

NAME

DLGPatternMatch —-- Check if a string matches a pattern
SYNOPSIS

result = DLGPatternMatch (pat,str)

A0 Al
BOOL DLGPatternMatch (char =*,char )

FUNCTION
Checks whether a string matches a wildcard pattern.

INPUTS
pat —— Pattern to be used. ’'x’ (match any number of characters) and
"?’ (match any single character) are supported wildcards.
str —— String to match against the pattern.
RESULT

TRUE 1if the string matches the pattern
FALSE if it doesn’t

EXAMPLE
if (!DLGPatternMatch ("x.c", "myprog.c"))
printf ("Hmmm, that should have matched\n);
NOTES

BUGS

SEE ALSO

1.45 dig.library/DLGProtoStatus

NAME
DLGProtoStatus —- Update the status of a transfer

SYNOPSIS
DLGProtoStatus (dsi, fsize,bytes, msqg)
A0 DO D1 Al
void DLGProtoStatus (struct DLGSerInfo «,ULONG,ULONG,char x)

FUNCTION
Updates the status information of a file transfer in the title bar.

INPUTS
dsi —— DLGSerInfo structure returned by
DLGGetSer ()
fsize —- Size of file being transferred (or 0 to not update the file

size).




DLGLib

38/148

bytes —— Number of bytes transferred so far (or 0 to not update this
field) .
msg —-— A message to be displayed temporarily instead of the other

information (or NULL for no message).

RESULT
none

EXAMPLE

DLGProtoStatus (serinfo,10367,1024,NULL) ;

NOTES

BUGS

SEE ALSO
DLGGetSer ()
14
DLGReleaseSer ()

1.46 dlg.library/DLGQuery

NAME
DLGQuery —-- Get input from the user
SYNOPSIS
result = DLGQuery (query,ui)
A0 Al

LONG DLGQuery (struct Query =x,struct

FUNCTION
DLG’s low-level user input routine.

INPUTS
query —-- Query structure (defined in
char xprompt -—- Prompt to be
requested.
char xtemplate —- Template for
input, other
example, "(

UserInfo x)

input.h) .
displayed before input is
input. Underscores "_" represent

characters are printed. For
) - " would make a good

template for

entering phone numbers. This

field is also used to hold the array of
possible input strings when in ’guess’ mode.

char *string —-

char xdefstring —--

Buffer to put the input in.

Default input to use if user just hits return.

This field is also used as the initial item
when in ’‘guess’ mode.

char xvalid --

String containing valid input characters. For

Has following elements:




DLGLib 39/148

example, "0123456789-" would get only signed,
numeric input.

USHORT length -- Maximum number of characters to be placed in the
"string’ field. This field also holds the
number of characters per input item when in
"guess’ mode.

USHORT typelength —-- Maximum number of characters the user is allowd
to type (you often want the user to be able to
type more than you want to read so that they
can type command stacks). This field holds the
number of items in the input array when in
"guess’ mode.

ULONG flags —-- Flags as defined in input.h.
ui —— UserInfo structure as defined in input.h.
RESULT

Number of characters read, or item selected if in "guess’ mode.

EXAMPLE

NOTES
"Guess’ mode needs more explanation. If the input you want is one
element of a sorted array of strings (such as user names), you can pass
in a pointer to a block of memory holding these input strings. This

pointer is placed in the ’'template’ field of the Query structure. The
"length’ field holds the length of each input string. The ’typelength’
field holds the number of input items there are. The ’'defstring’ holds
the number of the input string to start at. The user will then be able
to cursor up and down through the list of input items, and the input
will automatically be completed as the user types. The return value is
the number of the string the user selected.

BUGS
SEE ALSO
BoolQuery ()

4

IntQuery ()

1.47 dlg.library/DLGReleaseSer

NAME
DLGReleaseSer ——- Release a hold on the serial.device for a port.

SYNOPSTIS
DLGReleaseSer (dsi)
AO
void DLGReleaseSer (struct DLGSerInfo x)

FUNCTION




DLGLib 40/148

Releases the hold an application has on the serial.device for a port
after a file transfer is finished.

INPUTS
dsi —-—- DLGSerInfo structure returned by
DLGGetSer ()
RESULT
none
EXAMPLE

DLGReleaseSer (serinfo);

NOTES

BUGS

SEE ALSO
DLGGetSer ()
14
DLGProtoStatus ()

1.48 dig.library/DLGSearch

NAME
DLGSearch —-- Search for a structure in an array
SYNOPSIS
result = DLGSearch (array, structptr, structsize,fieldsize,elements)
A0 Al DO D1 D2

char *DLGSearch (char =x,char x,USHORT,USHORT,USHORT)

FUNCTION
Searches for a structure in an array (the array need not be sorted).

INPUTS
array —— Pointer to memory block to be searched.
structptr -- Pointer to structure to find (keyfield must be filled
in) . This can just be a pointer to the keyfield, it need
not be the entire structure.
structsize —-- Size of structure.
fieldsize -- Length of keyfield (1st field). This field must be a
string.
elements —— Number of structures in the array.
RESULT

Pointer to structure, if found, otherwise NULL. Note that the pointer
is to the actual structure in the array, not a copy of it.




DLGLib

41/148

EXAMPLE
mystruct = DLGBinSearch (structures, "Keyfield",sizeof (xmystruct),20,32);
if (!mystruct) printf ("Couldn’t find it\n");

NOTES

BUGS

SEE ALSO

DLGBinSearch ()

1.49 dig.library/Draw_Line

NAME
Draw_Line —-- Draw a line of dashes ('-').
SYNOPSIS
Draw_Line (size)

DO
void Draw_Line (UBYTE)

FUNCTION
Draws a line followed by a newline to the output device of the CLI.

INPUTS
size —-—- size of the line including the newline

RESULT
none

EXAMPLE
Draw_Line (20);

NOTES
BUGS
SEE ALSO

SDraw_Line ()

1.50 dig.library/EnterArea

NAME
EnterArea —-- Enter an area
SYNOPSIS
result = EnterArea(area, flags)
DO D1

LONG EnterArea (USHORT, UBYTE)




DLGLib 42 /148

FUNCTION
Enters an area, letting the resource manager know that there is someone
in the area and that it cannot be locked with

LockArea ()
INPUTS
area —— Area to enter.
flags —— As defined in resman.h.
RESULT

Error message as defined in resman.h.

EXAMPLE
result = EnterArea (20,MSGLOCK) ;

NOTES

BUGS

SEE ALSO
LeaveArea ()
14
BorrowArea ()
14
LockArea ()
4
FreeArea ()

1.51 dlg.library/Exists

NAME

Exists —— Check if a file or directory exists
SYNOPSIS

result = Exists(filename)

A0
BOOL Exists (char =)

FUNCTION
Checks to see if a file exists on disk.

INPUTS
filename —-- Full path of file or directory to search for.

RESULT
TRUE 1if file exists
FALSE if it doesn’t

EXAMPLE
if (!Exists(Filename)) printf ("[%$s] doesn’t exist\n",Filename);

NOTES




DLGLib 43/148

BUGS

SEE ALSO

1.52 dlg.library/ExistsGlobalArea

NAME
ExistsGlobalArea —-- Checks for an Area in a user’s global area file
SYNOPSIS
result = ExistsGlobalArea (path, area)

A0 DO
BOOL ExistsGlobalArea (char =, USHORT)

FUNCTION
Checks for an Area in one of the global area files. The global area
files are in the user’s directory and contain an area list of short
intergers. These are the GlobalAreas.file, GlobalAreas.msg and

GlobalAreas.archive.

INPUTS
path —— Full path and filename of the global area file
area —— Area number to be found.

RESULT

TRUE area found
FALSE area not found (not found, or file doesn’t exist)

EXAMPLE
result = ExistsGlobalArea ("User:Joe_Smith/GlobalAreas.msg", 10);

NOTES
While one would be tempted to check for the file first (see
Exists ()
)I
keep in mind that if the file does NOT exist, the user has no global
areas defined. Therefore, your code will be faster if you just use
this function and not worry about whether the file is there or not.

BUGS
SEE ALSO
AddArea ()

4

DelArea ()

1.53 dlg.library/FileCopy




DLGLib 44 /148

NAME
FileCopy —-—- Copy a file
SYNOPSIS
result = FileCopy(ifh,ofh,iofs,cofs,size)

A0 Al DO D1 D2
LONG FileCopy (BPTR, BPTR, ULONG, ULONG, ULONG)

FUNCTION
Copy all or part of a file onto all or part of another file.

INPUTS
ifh —-- AmigaDOS FileHandle of an open input file.
ofh —-- AmigaDOS FileHandle of an open output file.
iofs —— Offset to begin copying from in the input file.
oofs —-- Offset to begin copying to in the output file.
size —— Number of bytes to copy.

RESULT

0 successful
-1 output drive is full

EXAMPLE
FileCopy (in,out,0,0,size);

NOTES

BUGS

SEE ALSO
Copy ()
14
SmartRename ()

1.54 dlg.library/FileSize

NAME

FileSize —-- Get the size of a file
SYNOPSIS

result = FileSize(filename, size)

A0 Al
LONG FileSize (char =, ULONG =)

FUNCTION
Gets the size of a file on disk.

INPUTS
filename -- Full path to file.




DLGLib

45/148

size

RESULT

—-— Address of long to put file size into.

-1 if operation failed

0 if operation was successful

EXAMPLE

if(FileSize("myfile", &size)
else printf ("The size is

NOTES

BUGS

SEE ALSO

1.55 dig.library/FreeArea

NAME
FreeArea ——- Free a lock on an area
SYNOPSIS
result =

FUNCTION

Frees a lock that an application holds on an area.

INPUTS
area —— Number of the area to be freed
passwd —- Password the area was locked with.
flags —-- As defined in resman.h.

RESULT

Error message as defined in resman.h

EXAMPLE
result =

NOTES

BUGS

SEE ALSO

FreeArea (area,passwd, flags)
DO A0
LONG FreeArea (USHORT, char *,UBYTE)

FreeArea (20, "MyPasswd", MSGLOCK) ;

BorrowArea ()

4

LockArea ()

4

EnterArea ()

4

printf ("Something got messed up\n");
[$1u]l\n",size);




DLGLib 46 /148

LeaveArea ()

1.56 dig.library/FreeArealnfo

NAME
FreeArealInfo —- Free Arealnfo structure
SYNOPSIS
result = FreeArealnfo(istruct)

AQ
LONG FreeArealnfo(struct DLGArealInfo x)

FUNCTION
Frees an DLGArealInfo structure obtained with GetAreaInfol().

INPUTS
istruct —-- DLGArealInfo structure obtained with GetArealnfo().

RESULT
Error message as defined in resman.h.

EXAMPLE
result = FreeArealnfo(istruct);

NOTES
In previous versions of DLG’s includes and autodocs, the DLGArealInfo
structure was called the AreaInfo structure, which was a conflict with
an AmigaDOS system structure.

BUGS

SEE ALSO

GetArealInfo ()

1.57 dig.library/FreeMenu

NAME
FreeMenu —- Free a menu
SYNOPSIS
result = FreeMenu (port,name, passwd)

A0 Al A2
LONG FreeMenu (char =*,char #*,char )

FUNCTION
Free a menu locked with
LockMenu ()
INPUTS

port —-— Port the application is running on.




DLGLib 47 /148

name —-— Name of menu.
passwd ——- Password menu was locked with.
RESULT

Error message as defined in resman.h.

EXAMPLE
result = FreeMenu ("TRO", "main", "mypasswd") ;

NOTES
This function is not ready for use by third-party developers.

BUGS
SEE ALSO
LockMenu ()

4

PurgeMenu ()

1.58 dig.library/FreePort

NAME
FreePort —-- Free a lock on a port
SYNOPSIS
result = FreePort (port,passwd)
A0 Al

LONG FreePort (char =,char x)

FUNCTION
Frees a lock that an application currently holds on a port.

INPUTS

port —— Three-character port name.

passwd —- Password the port was previously locked with.
RESULT

The result is an error message (see resman.h for #defines).

EXAMPLE
FreePort ("TRO", "MyPassword") ;

NOTES
BUGS
SEE ALSO
LockPort ()

4

ImmedLockPort ()




DLGLib 48/148

14
TransferPortLock ()

1.59 dig.library/FreePortinfo

NAME
FreePortInfo -- Free information about a port
SYNOPSIS
result = FreePortInfo (istruct)

A0
LONG FreePortInfo(struct PortInfo «)

FUNCTION
Frees a PortInfo structure obtained with
GetPortInfo()
INPUTS
istruct —-—- PortInfo structure obtained with
GetPortInfo()
RESULT

Error message as defined in resman.h.

EXAMPLE
result = FreePortInfo (&istruct);

NOTES
BUGS
SEE ALSO

GetPortInfo()

1.60 dig.library/FreeResource

NAME
FreeResource ——- Free a miscellaneous resource
SYNOPSIS
result = FreeResource (name,passwd)

A0 Al
LONG FreeResource (char =*,char x)

FUNCTION
Frees a miscellaneous named resource locked with
LockResource ()




DLGLib 49/148

INPUTS
name —— Name of resource to be freed.
passwd —— Password resource was locked with.
RESULT

Error message as defined in resman.h.

EXAMPLE
result = FreeResource ("MyResource", "MyPasswd") ;

NOTES
BUGS
SEE ALSO

LockResource ()

1.61 dlg.library/FreeResReport

NAME
FreeResReport —-— Free a resource report
SYNOPSIS
result = FreeResReport (lst)

AQ
LONG FreeResReport (struct List «)

FUNCTION
Frees the resource report structure returned by
GetResReport ()
INPUTS
lst —— The List structure returned by
GetResReport ()
RESULT

Error message as defined in resman.h.

EXAMPLE
error = FreeResReport (resrep);

NOTES
The List structure is an AmigaDOS double-linked list as described in
RKM: Libraries.

BUGS

SEE ALSO

GetResReport ()




DLGLib 50/148

1.62 dig.library/GetArealnfo

NAME
GetAreaInfo -- Get information about a message/file area
SYNOPSIS
result = GetArealnfo(istruct, flags)

A0 DO
LONG GetArealInfo(struct DLGArealInfo «,UBYTE)

FUNCTION
Gets information about a message or file area from the resource
manager.
INPUTS
istruct —-- DLGArealInfo structure to be filled in. This structure is as
follows (as defined in resman.h):
USHORT area —-- Area to get info about (must be filled in).
char xpasswd —-—- Password area is locked with (filled in by the
resource manager) .
char xreason —- Reason the area is locked (filled in by the resource
manager) .
char priority —-- Priority of the lock (filled in by the resource
manager) .

UBYTE users —-- Number of users in the area (filled in by the

resource manager) .
flags —— MSGLOCK for a message area, FILELOCK for a file area.
RESULT
Error message as defined in resman.h.

The DLGArealInfo structure is filled in.

EXAMPLE
result = GetArealInfo (&istruct,MSGLOCK) ;

NOTES
BUGS
SEE ALSO

FreeArealInfo ()

1.63 dlg.library/GetChar

NAME
GetChar -- Read a character from the user




DLGLib 51/148

SYNOPSIS
result = GetChar ()

char GetChar (void)

FUNCTION
Reads a character from the user on standard input.

INPUTS
none

RESULT
The character.

EXAMPLE
c = GetChar();

NOTES

BUGS

SEE ALSO
PutChar ()
14
ReadChar ()

1.64 dlg.library/GetComment

NAME

GetComment ——- Get a file’s comment
SYNOPSIS

result = FileSize(filename, comment)

AQ Al
LONG FileSize (char =*,char =)

FUNCTION
Gets the comment of a file on disk.

INPUTS

filename -- Full path to file.

comment —- Address of string to put file comment into.
RESULT

-1 if operation failed
0 if operation was successful

EXAMPLE
GetComment ("myfile", comment);

NOTES

BUGS




DLGLib 52/148

SEE ALSO

1.65 dlg.library/GetComputerType

NAME

GetComputerType —-—- Get the name of a computer type
SYNOPSIS

result = GetComputerType (number, string)

DO A0
LONG GetComputerType (SHORT, char =x)

FUNCTION
Gets the name of the computer type corresponding to a particular number

INPUTS

number —-— The number of the computer type.

string —- String to be filled in (should be 36 characters).
RESULT

The number of the computer type, or 0 if the computer type file
couldn’t be opened.

EXAMPLE
num = GetComputerType (User—->Computer_Type,buf);

NOTES
BUGS

SEE ALSO

1.66 dlg.library/GetDevName

NAME

GetDevName -- Find out what port the user is on
SYNOPSIS

result = GetDevName (port)

AQ
LONG GetDevName (char x)

FUNCTION
Determines what port the application is running on.

INPUTS
port —-- Port string to be filled in (should be 4 characters).

RESULT
0 1if port was found




DLGLib 53/148

-1 if port could not be determined

EXAMPLE
if (GetDevName (port)==-1) printf ("Unable to determine port\n");

NOTES
BUGS

SEE ALSO

1.67 dlg.library/GetFileDate

NAME

GetFileDate ——- Get the date of a file
SYNOPSIS

result = GetFileDate (filename, date)

A0 Al
BOOL GetFileDate (char *, LONG x)

FUNCTION
Gets the date of a file on disk.

INPUTS

filename -- Full path to file.

date —— Address of long to put file date into.
RESULT

0 if operation failed
1 if operation was successful

EXAMPLE
GetFileDate ("myfile", &date);

NOTES
BUGS

SEE ALSO

1.68 dig.library/GetFirstStruct

NAME
GetFirstStruct ——- Get the first structure from a file
SYNOPSIS
result = GetFirstStruct (filename, structptr, structsize)

AQ Al DO
LONG GetFirstStruct (char *,char =, ULONG)




DLGLib 54/148

FUNCTION
Gets the first structure from a file on disk.

INPUTS
filename —-— Filename to get structure from.
structptr -- Pointer to memory area to place structure information in.
structsize -- Size of structure.

RESULT

-1 if operation failed
0 if operation was successful

EXAMPLE
result = GetFirstStruct ("Structures.dat",mystructure,
sizeof (smystructure));
NOTES
BUGS
SEE ALSO
GetStruct ()
4
Addstruct ()
4
DeleteStruct ()

1.69 dig.library/GetHiLowFPointers

NAME
GetHiLowFPointers —— Get the high and low pointers for a file area
SYNOPSIS
GetHiLowFPointers (area, username, low, high, pswd)
DO AO Al A2 A3

void GetHiLowPointers (USHORT, char *,LONG x,LONG *,char =x)

FUNCTION
Gets the high and low file pointers for a file area.

INPUTS
area —— Number of the area (PVTAREA for a user’s private area)
username -- Underscored name of the user, if getting pointers for
a private area. Otherwise this field should be NULL.
low —-— Pointer to a long value to store low pointer in.
high —-— Pointer to a long value to store high pointer in.

pswd —— Password to lock area with when reading pointers file.




DLGLib 55/148

RESULT
none

EXAMPLE
GetHiLowFPointers (PVTAREA, "John_Doe", &low, &high, "pswd") ;

NOTES
This function puts a lock on the file area, so do not use it on an
area that is already locked by the same application, or the program
will hang up waiting for itself to release the area so it can lock it.

BUGS
SEE ALSO

PutHiLowFPointers ()

4

GetHiLowPointers ()

4

PutHiLowPointers ()

1.70 dlg.library/GetHiLowPointers

NAME
GetHiLowPointers —-- Get the high and low pointers for a message area

SYNOPSIS
GetHiLowPointers (area, username, low, high, pswd)
DO A0 Al A2 A3
void GetHiLowPointers (USHORT, char *,LONG x, LONG *,char =x)

FUNCTION
Gets the high and low message pointers for a message area.

INPUTS
area —— Number of the area (PVTAREA for a user’s private area)
username —-- Underscored name of the user, if getting pointers for
a private area. Otherwise this field should be NULL.
low —-— Pointer to a long value to store low pointer in.
high —— Pointer to a long value to store high pointer in.
pswd —— Password to lock area with when reading pointers file.
RESULT
none
EXAMPLE

GetHiLowPointers (PVTAREA, "John_Doe", &low, &high, "pswd") ;

NOTES
This function puts a lock on the file area, so do not use it on an
area that is already locked by the same application, or the program




DLGLib 56 /148

will hang up waiting for itself to release the area so it can lock it.
BUGS
SEE ALSO

PutHiLowPointers ()

4

GetHiLowFPointers ()

14

PutHiLowFPointers ()

1.71 dig.library/GetLang

NAME
GetLang ——- Get the language information for a port
SYNOPSIS
result = Getlang(port)
AD

struct LangStruct *GetLang(char x)

FUNCTION
Gets the language information for a port.

INPUTS
port —— Port to be used.

RESULT
A LangStruct, which is formatted as follows (defined in resman.h):

char name[21] —— Name of the language.

char x*strings —-— Array of pointers to the language strings (as
read from the language file on disk).

short numstrings —-- Number of language strings.

EXAMPLE
lstruct = GetLang ("TRO");

NOTES
BUGS
SEE ALSO

LoadLang ()

1.72 dlg.library/GetLevel




DLGLib 577148

NAME

GetLevel —-—- Get the level of a user.
SYNOPSIS

result = GetLevel (name)

AQ
SHORT GetLevel (char =)

FUNCTION
Returns the access level of a user. The user name may be underscored
or not. If the user can not be found a level of 257 is returned.
INPUTS
name —-- User name
RESULT

User level or 257
EXAMPLE

level = GetLevel ("Joe Smith");
NOTES
BUGS

SEE ALSO

1.73 dlg.library/GetOrigin

NAME

GetOrigin —-- Get the origin address of a message
SYNOPSIS

result = GetOrigin (message, zone, net, node, point)

A0 Al A2 A3 DO
BOOL GetLevel (char *, SHORT %, SHORT %, SHORT *, SHORT x)

FUNCTION
Find the origin address of a message. The message is first searched
for an origin line. Then the kludge lines (FMPT/INTL) are searched
for.
INPUTS
message —-—- Full path and filename of the message
zone —— Address of SHORT to recieve the zone
net —— Address of SHORT to recieve the net
node —— Address of SHORT to recieve the node

point —— Address of SHORT to recieve the point




DLGLib

58/148

RESULT
TRUE if a origin address was found
FALSE if no origin was found
EXAMPLE
if (!GetOrigin("MSG:1/5403.msg", &zone, &net, &node, &point))
printf("Can’t find origin address\n");
NOTES
BUGS

SEE ALSO

1.74 dlg.library/GetPath

NAME
GetPath —-- Get the path of a file or filearea
SYNOPSIS
result = GetPath (path, area, carea, file)
AQ DO Al A2
LONG GetLang(char x, SHORT, struct Msg_Area x, char x)
FUNCTION

Gets the path of a file or filearea.

If no filename is provided, it returns (in path) the path of
the filearea. The path is either FILE:<area>/ or the path
defined in the area’s definition as the ALT area.

If a filename is provided, the file is found (either in the default
path, alt path, or in one of the DLGConfig:Misc/FilePaths.BBS paths).

If the file can~not be found an error is returned.

INPUTS
path —- Pointer to the returned path.
area —- Area of the file.
carea —-- Current area info structure. (optional)
file —-- Pointer to a filename. (optional)
RESULT

-1 if failed (bad area #, file not found, etc).
0 default (root) path returned.

1 alternate path returned.

2 global file path returned.

EXAMPLE




DLGLib 59/148

// Get the path for a file area, with area definition.
result = GetPath(path, area, carea, NULL);
// Get the path for a file area, with no area definition
result = GetPath(path, area, NULL, NULL);
// Get the path for a file, with area definition
result = GetPath (path, area, carea, filename);
NOTES
If your program has loaded a file area definition, pass it in carea.
It’s faster to use it than have the function read the definition from
disk.

BUGS

SEE ALSO

1.75 dlg.library/GetPortinfo

NAME
GetPortInfo —-- Get information about a port
SYNOPSIS
result = GetPortInfo (istruct)

A0
LONG GetPortInfo(struct PortInfo )

FUNCTION
Gets information about the status of a port from the resource manager.

INPUTS
istruct —-- PortInfo structure to be filled in. The structure has the
following format (as defined in resman.h):

char =port —— Port to get info about (must be filled in).

char *passwd -- Password port is locked with (filled in by the
resource manager) .

char xreason -—-— Reason port is locked (filled in by the
resource manager) .

char priority -- Priority of lock (filled in by the resource
manager) .

char xbreakcommand —-- Command to break lock (filled in by the

resource manager) .

RESULT




DLGLib 60/148

Error message as defined in resman.h.

EXAMPLE
result = GetPortInfo (&istruct);

NOTES
BUGS
SEE ALSO

FreePortInfo ()

1.76 dig.library/GetResReport

NAME
GetResReport —-- Get information about many resources

SYNOPSIS
result = GetResReport ()

struct List xGetResReport (void)

FUNCTION
Gets information about ports, message areas, file areas, miscellaneous
locks, and menu sets.

INPUTS
none

RESULT
Exec List structure that contains a node for each resource currently
being managed by the resource manager. The nodes are ResRepNode
structures (defined in resman.h) which have the following structure:

struct Node node -—- Node structure for queuing. The kind of
node (NODE_MISC, NODE_PORT, NODE_MAREA,
NODE_FAREA, or NODE_MENU) is in the
In _Type field.

char xbgcommand -- Background command (for Port nodes).
char xlanguage —-— Loaded language (for Port nodes).
char xmenu —--— Current menu (for Port nodes).

UBYTE users —-— Number of users (for Area nodes).
struct List xactivelocks —-- List of active locks.

struct List xpendinglocks —-- List of pending locks.

The lock lists are lists of LockRepNode structures (defined in
resman.h) which have the following structure:




DLGLib

struct Node node -- Node structure for queuing. The 1n_Type field
contains the type of the node this list of
locks is for.

char *reason —- Reason for lock.

UBYTE type —-— Type of lock (MSGLOCK or FILELOCK, PENDLOCK (or
not), QUICKLOCK (or not), WRITELOCK (or not)).

char xbreakcommand —-- Break command to release lock (for Port nodes).
EXAMPLE
resrep = GetResReport();
NOTES

Consult RKM: Libraries for more information on the AmigaDOS dual
linked lists, thier structure, and how to handle them.

BUGS
SEE ALSO

FreeResReport ()

1.77 dig.library/GetStruct

NAME
GetStruct —-- Get a structure from a file
SYNOPSIS
result = GetStruct (filename, structptr,structsize, fieldsize)
A0 Al DO D1

LONG GetStruct (char =*,char x,USHORT,USHORT)

FUNCTION
Reads a particular structure from a file on disk.

INPUTS
filename —-— File to read structure from.
structptr -- Pointer to memory area to place structure information
in. The keyfield must be filled in.
structsize —-- Size of structure.
fieldsize —-- Size of keyfield (1lst field) for sorting. This field
must be a string.
RESULT

-1 if operation failed
0 if operation was successful

EXAMPLE
result = GetStruct ("Structures.dat",mystructure,
sizeof (smystructure),10);




DLGLib 62/148

NOTES
BUGS
SEE ALSO
GetFirstStruct ()
14
AddStruct ()
14
DeleteStruct ()

1.78 dlg.library/HandleBCMsgs

NAME
HandleBCMsgs —-- Display all pending BroadCast messages
SYNOPSIS
result = HandleBCMsgs (port)

A0
LONG HandleBCMsgs (char =)

FUNCTION
Displays all pending BroadCast messages with a beep before each.

INPUTS
port —-— Port to display messages for.

RESULT
Error message as defined in broadcast.h.

EXAMPLE
result=HandleBCMsgs ("TRO") ;

NOTES

BUGS

SEE ALSO
BCGet ()
14
BCPend ()
14
BCResume ()
14
BroadCast ()
4
BCMsqg ()

1.79 dlg.library/immedLockPort




DLGLib 63/148

NAME
ImmedLockPort —-- Lock a port with an "immediate" lock
SYNOPSIS
result = ImmedLockPort (port,passwd, reason,pri,bc)

AQ Al A2 DO A3
LONG ImmedLockPort (char *,char =x,char x,char,char =x)

FUNCTION
Locks a port with an "immediate"™ lock. This means that the function
will return immediately, regardless of whether a lock was obtained.
This function will not wait to get a lock if the port is locked by
another application.

INPUTS
port —— Three-character port name.
passwd ——- Password to lock port with.
reason —-- Descriptive reason for lock.
pri —-— Priority of lock (-127 to 128). Negative priority locks can
be overridden by higher priority locks.
bc —— Break command - a command to be executed that will break the
application if a higher priority lock is requested.
RESULT

The result is an error message (see resman.h for #defines).

EXAMPLE
result = ImmedLockPort ("TRO", "MyPasswd", "Doing important stuff",-1,
"MyBreakProgram") ;
NOTES
BUGS
SEE ALSO
FreePort ()
4
LockPort ()

4

TransferPortLock ()

1.80 dig.library/ImportPublicMsg

NAME
ImportPublicMsg —-—- Import a message into a DLG message area

SYNOPSIS
result = ImportPublicMsg(header,body,areainfo,pswd)
A0 Al A2 A3




DLGLib 64 /148

LONG ImportPublicMsg(struct Msg_Header «*,char x,
struct Msg_Area x,char x)

FUNCTION
Imports a message into a DLG message area. This routine should be used
to bring in a message that came in from another system via some kind
of network.

INPUTS
header —— Fidonet message header structure (see msg.h for details).
body —— Null-terminated block of text that makes up the body of the
message. This text should be in standard, fidonet format
as specified by FTS-0001.
areainfo —-- Msg_Area structure of the area to place the message in.
This structure can be obtained by using
ReadArea ()
pswd —— Password to lock the area with while the message is being
written.
RESULT

The number the message was assigned in the area, or FALSE if the
operation failed

EXAMPLE
num = ImportPublicMsg (&header,bodytext, &area, "Importing");

NOTES

BUGS

SEE ALSO
SendPublicMsg ()
14
SendPrivateMsqg ()
4
SendRawMsg ()
14
KillMsg ()

1.81 dig.library/Inform

NAME
Inform —-- Inform a user of something
SYNOPSIS
result = Inform(username,buffer,port, flags)
AQ Al A2 DO

BOOL Inform(char =,char *,char x,UBYTE)

FUNCTION




DLGLib 65/148

Informs a user of something by broadcasting them a message
or writing to their event log if they are not online.

INPUTS
username —- Name of user, or "ALL" for all user’s online.
buffer -— String to be sent as a message.
port —-— Port application is running on (so that the port sending
the message doesn’t get a copy of a message to "ALL").
flags —— BCIMPORTANMSG if the message is very important and should
be sent even if messages are pending on a port.
RESULT

TRUE 1f operation is successful
FALSE if function failed

EXAMPLE
Inform("ALL",NULL, "System going down in 2 minutes");

NOTES
Currently limited to 26 users online at once, otherwise an overflow
will occur.

BUGS

SEE ALSO

WriteEvent ()

1.82 dig.library/IntQuery

NAME
IntQuery —-—- Get an integer value from the user
SYNOPSIS
result = IntQuery (query, lower,upper,def,ui)
AQ DO D1 D2 Al

LONG IntQuery (char =, SHORT, SHORT, SHORT, struct UserInfo x)

FUNCTION
Prompts the user for an integer value.

INPUTS
query ——- String to be displayed before input is requested.
lower —- Lower limit on numeric input.
upper —-- Upper limit on numeric input.
def —-— Default value to be used if user just hits return.

ui —— UserInfo structure as defined in input.h.




DLGLib 66 /148

RESULT
Number the user typed.

EXAMPLE
number = IntQuery ("Type a number between 1 and 5: ",1,5,3,MyUserInfo);
NOTES
BUGS
SEE ALSO
BoolQuery ()
14
DLGQuery ()

1.83 dig.library/KillMsg

NAME
KillMsg —-—- Delete a message from an area
SYNOPSIS
result = KillMsg(message, area,username,pswd)
DO D1 AQ Al

BOOL KillMsg (LONG,USHORT,char =*,char x)

FUNCTION
Deletes a message from an area.

INPUTS
message —- Number of the message to be deleted.
area — Number of the area to delete the message from (PVTAREA
for a user’s private area).
username —-- Name of user if deleting a message from a user’s private
area.
pswd —— Password to lock the area with while the message is
being deleted.
RESULT

TRUE 1f operation was successful
FALSE if function failed

EXAMPLE
KillMsg (23, PVTAREA, "John Doe","Killing message");

NOTES
BUGS
SEE ALSO

SendPublicMsg ()




DLGLib 67/148

4

SendRawMsg ()

4

SendPrivateMsg ()

14

ImportPublicMsg ()

1.84 dig.library/LeaveArea

NAME
LeaveArea ——- Leave an area
SYNOPSIS
result = LeaveArea (area, flags)
DO D1

LONG LeaveArea (USHORT, UBRYTE)

FUNCTION
Leaves an area that was previously entered.

INPUTS

area —- Area to leave.

flags —— As defined in resman.h.
RESULT

Error message as defined in resman.h.

EXAMPLE
error = LeaveArea (20,MSGLOCK) ;

NOTES

BUGS

SEE ALSO
EnterArea ()
14
FreeArea ()
4
BorrowArea ()
14
LockArea ()

1.85 dig.library/ListAreas

NAME
ListAreas -- Display a list of available areas (file or message)

SYNOPSIS
result = ListAreas(name, user, type, siqg)




DLGLib 68/148

A0 Al DO D1
LONG ListAreas (char *, struct USER_DATA %, char, UBYTE)

FUNCTION
Display a list of available areas (file or message).

INPUTS
name —-- The non-underscored name of the user (optional). If the name
is provided and the user does not have access to the area
based on level or the area is not auto-access, then the
User.<file|msg> file is checked to see if access has been
granted. TIf the name is not provided then only auto-access
areas that the user’s level qualifies them for is displayed.
user —- Address of the USER_DATA structure
type ——- Type of area list to display 0=Message 1=File
sig —-—- SIG number to display areas for (0=no sig).
RESULT
0 = successful
-1 = unsuccessful
EXAMPLE

error = ListAreas (Ram.Name, &User, 0, 0);

NOTES
Honors the user’s more prompt.

The "Please Wait.." has been removed and the areas are displayed as
processed. It wasn’t needed and was wasting memory and the user’s
patience.

If the user’s screen width is too small for a two column display, the
areas are now displayed in a single column.

BUGS
SEE ALSO

ListSIGS ()

1.86 dig.library/ListPorts

NAME

ListPorts —— Get a list of active ports
SYNOPSIS

result = ListPorts (buf, passwd)

A0 Al
LONG ListPorts(char =*,char =x)

FUNCTION
Gets a list of active ports.




DLGLib 69/148

INPUTS
buf —-— Buffer to hold port 1list, three characters per port.
passwd —— If non-NULL, only ports locked with this password will
be listed.
RESULT

Error message as defined in resman.h.

EXAMPLE
error = ListPorts (buf, "BBS");

NOTES
BUGS

SEE ALSO

1.87 dlg.library/ListSIGS

NAME
ListSIGS —- Display a list of available SIGs (file or message)
SYNOPSIS
result = ListSIGS (user, type, filter)
AQ DO D1

LONG ListAreas (struct USER_DATA %, char, char)

FUNCTION
Display a list of available SIGs (file or message) .

INPUTS

user —— Address of the USER_DATA structure

type —-— Type of SIG list to display 0=Message 1=File

filter —— Show all SIGs or only those that the user’s access level

qualify them for. 0=All SIGS 1=Access
RESULT
0 = successful

-1 = unsuccessful
EXAMPLE

error = ListSIGS (&User, 0, 0);

NOTES
Handles the user’s more prompt.

If the user’s screen width is too small for a two column display, the
SIGs are now displayed in a single column.

BUGS




DLGLib 70/148

SEE ALSO

ListAreas ()

1.88 dlg.library/LoadlLang

NAME
LoadlLang —- Load a language
SYNOPSIS
result = LoadLang (port,name)
AQ Al

LONG LoadLang (char =x,char x)

FUNCTION
Loads a language as the new language for a port.

INPUTS

port —-— Port to load language on.

name —-- Name of the language to be loaded.
RESULT

Error message as defined in resman.h.

EXAMPLE
LoadLand ("TRO", "Italian");

NOTES
BUGS
SEE ALSO

GetLang ()

1.89 dig.library/LockArea

NAME
LockArea —- Lock an area for an extended period of time
SYNOPSIS
result = LockArea (area,passwd, reason,pri, flags)
DO AQ Al D1 D2

LONG LockArea (USHORT, char *,char =*,char,UBYTE)

FUNCTION
Locks an area for an extended period of time. An application cannot
lock an area if there are any users currently in it. The lock will

pend until all users have left the area.

INPUTS




DLGLib 71/148

area —— Number of the area to be locked.
passwd ——- Password to lock area with.
reason —-- Reason the area is being locked.
pri —-— Priority for lock (=127 to 128).
flags -- As defined in resman.h.

RESULT

Error as defined in resman.h.

EXAMPLE
result - LockArea (20, "MyPasswd", "Doing something", 0, MSGLOCK) ;

NOTES
BUGS
SEE ALSO
BorrowArea ()
4
LeaveArea ()
14
FreeArea ()
14
EnterArea ()

1.90 dig.library/LockMenu

NAME
LockMenu —-- Lock a menu
SYNOPSIS
result = LockMenu (port,ms, custnum, passwd, reason, pri, flags)
AQ Al DO A2 A3 D1 D2

LONG LockMenu (char x,struct MenuStuff x,USHORT,char =x,
char «,char,UBYTE)

FUNCTION
Locks a menu and gets information about it.

INPUTS
port —-— Port the application is running on.
ms —-— MenuStuff structure.
custnum —-- User’s custom menu set number.
passwd —-- Password to lock menu with.

reason —- Reason for locking menu.




DLGLib 727148

pri —-— Priority of lock (-127 to 128).
flags —-— As defined in resman.h.
RESULT

Error message as defined in resman.h.

EXAMPLE
result = LockMenu (port, &ms, User—->menuset, "Mypasswd", "Displaying", 0,
PENDLOCK) .
NOTES

This routine is not yet~suitable to be used by 3rd-party developers.
BUGS
SEE ALSO
FreeMenu ()

4

PurgeMenu ()

1.91 dig.library/LockPort

NAME
LockPort —-- Lock a port
SYNOPSIS
result = LockPort (port,passwd, reason,pri,bc)
AQ Al A2 DO A3

LONG LockPort (char =*,char #*,char x,char,char )

FUNCTION
Locks a port. The function will not return until a lock is obtained.
If the port is in use by another application, the function will pend
until the port is free.

INPUTS
port —— Three-character port name.
passwd ——- Password to lock the port with.
reason —-- Descriptive reason for lock.
pri —-— Priority of lock (-127 to 128). Negative priority locks can
be overridden by higher priority locks.
bc —— Break command - a command to be executed that will break the
application if a higher priority lock is requested.
RESULT

The result is an error message (see resman.h for #defines).

EXAMPLE
result = LockPort ("TRO", "MyPasswd", "No Reason",0,NULL) ;




DLGLib

737148

NOTES

BUGS

SEE ALSO
FreePort ()
14
TransferPortLock ()
14
ImmedLockPort ()

1.92 dig.library/LockResource

NAME
LockResource —— Get a lock on a miscellaneous resource
SYNOPSIS
result = LockResource (name,passwd, reason,pri, flags)

AQ Al A2 DO D1
LONG LockResource (char x,char #*,char *,char,UBYTE)

FUNCTION
Gets a lock on a miscellaneous named resource.

INPUTS
name —— Name of resource to be locked. Can be any string.
passwd ——- Password to lock resource with.
reason ——- Reason for locking resource.
pri —— Priority of lock (=127 to 128).
flags —-- Flags as defined in resman.h.
RESULT

Error message as defined in resman.h.

EXAMPLE

result = LockResource ("MyResource", "MyPasswd", "No reason", 0, PENDLOCK) ;

NOTES
BUGS
SEE ALSO

FreeResource ()

1.93 dlg.library/LogOut




DLGLib 747148

NAME

LogOut —-—- Performs DLG’s basic logout processing
SYNOPSIS

LogOut (Ram, User, Port, program)

AQ Al A2 A3
VOID LogOut (struct Ram_File *, struct USER_DATA *, char x, char x)

FUNCTION
Does DLG’s basic logout processing (basically everything that GoodBye
performs). First checks for carrier and either writes a NORMAL_LOGOUT

or LOST_CARRIER event record. Handles any outstanding broadcast
messages for that port. Cleans up DLG’s temporary files and deletes
the Removeuser Cron event. Updates the User data record for time
online and last login date. Executes the LogOut.DLGBatch file and
displays the LogOut.txt file.

INPUTS
Ram —— Address of the Ram_File structure of the user.
User —— Address of the USER_DATA structure.
port —-— DLG Port (should be 4 characters) that the program
is running on.
program —-- Name of the program that was executing.
RESULT

TRUE 1if successful
FALSE if batch file not found

EXAMPLE
LogOut (Ram, User, Port, "Mess");

NOTES
BUGS

SEE ALSO

1.94 dig.library/MDate

NAME
MDate -- Make a timestamp
SYNOPSIS
MDate (string)
AO

void MDate (char )

FUNCTION
Makes a string containing a timestamp of the current time.

INPUTS




DLGLib 757148

string —— Pointer to a buffer to place the timestamp in. An example
timestamp would be "Mon 3 May 93 1:22". The buffer must
be 20 characters long (19 characters plus null-termination).

RESULT
none

EXAMPLE
MDate (mytimestamp) ;

NOTES

BUGS

SEE ALSO
SMDate ()
14
UnpackTime ()
14
AmigaTime ()

1.95 dig.library/More

NAME
More -- Print a "More [Y/n/=]" prompt
SYNOPSIS
result = More (fh, ansi, header)
A0 DO D1

LONG More (BPTR, UBYTE, UBYTE)

FUNCTION

Prints a "More [Y/n/=]" prompt and waits for the user to respond.
INPUTS

th —-— AmigaDOS FileHandle to print prompt to.

ansi —— User’s ANSI settings.

header —-- Number of "header’ lines at the top of the screen. Should

be 0 if More() is being called directly.

RESULT

0 1f user responded ’yes’
1 if user responded ’'no’
2 if user responded =’

EXAMPLE
result = More (Output(),User.Ansi_Flag,O0);

NOTES

BUGS




DLGLib 76/148

SEE ALSO

Pause ()

1.96 dlg.library/NextinGroup

NAME
NextInGroup —-- Get the next name in a group
SYNOPSIS
result = NextInGroup (fh, name)

A0 Al
BOOL NextInGroup (BPTR,char x)

FUNCTION
Gets the next name from a group file opened with OpenGroup () .

INPUTS
fh —-— AmigaDOS FileHandle returned by OpenGroup () .
name —-- Name to be filled in by NextInGroup () .
RESULT

TRUE 1if a name was read
FALSE if there are no more names in the group

EXAMPLE
while (NextInGroup (fh,name)) printf ("Next name is [%s]\n",name);

NOTES

BUGS

SEE ALSO
OpenGroup ()
4
CloseGroup ()

1.97 dig.library/OpenGroup

NAME
OpenGroup —-- Open a group file to be accessed
SYNOPSIS
result = OpenGroup (groupname)

AQ
BPTR OpenGroup (char x)

FUNCTION
Opens a group file to be accessed.




DLGLib 77/148

INPUTS
groupname —--— Name of group to be opened.

RESULT
AmigaDOS filehandle of group, or NULL if group couldn’t be opened.

EXAMPLE
fh = OpenGroup ("somegroup") ;
NOTES
Use
NextInGroup ()
to access the names in the group.
BUGS
SEE ALSO
CloseGroup ()
4
NextInGroup ()

1.98 dlg.library/OverlayProgram

NAME
OverlayProgram —-- Execute another program using the current CLI
SYNOPSIS
result = OverlayProgram(string)

AQ
LONG OverlayProgram(char x)

FUNCTION
Execute another program using the current CLI. When the program
ends, the current program will continue.

INPUTS
string —-- Full path, filename and arguments of the program to execute.

RESULT
Exit code of the program executed.

EXAMPLE
result = OverlayProgram("DLG:LineEdit");

NOTES
The called program will have a new stack of the same size as the
current program. If there is a resident version of the program it
will be used and any path will be ignored.

If the file has the script flag set, it will be EXECUTEd and the
script result will be returned. The script will be able to output
to the DLG port, but will not be able to read data from the port.

BUGS




DLGLib 787148

SEE ALSO

ChainProgram ()

1.99 dlg.library/Pause

NAME

Pause —- Print a "[Press Return]"

prompt

SYNOPSIS
Pause ()

BOOL Pause (void)
FUNCTION
Prints a "[Press Return]" prompt on the user’s screen, and waits for

the user to hit return.

INPUTS
none

RESULT
none

EXAMPLE
Pause () ;

NOTES
BUGS
SEE ALSO

More ()

1.100 dig.library/PrintSpace

NAME
PrintSpace —- Print spaces intelligently

SYNOPSIS
result = PrintSpace(fh,ansi, spaces)
A0 DO D1
BOOL PrintSpace (BPTR, UBYTE, USHORT)

FUNCTION
Prints spaces intelligently based on a user’s ANSI settings.

INPUTS
fh —— AmigaDOS FileHandle to send output to.




DLGLib 79/148

ansi —— User’s ANSI settings. If the user has ANSI screen
positioning enabled, it will be used to move the cursor the
specified number of spaces (providing that there are enough
spaces to make this more efficient).

spaces —— Number of spaces to print.

RESULT
TRUE

EXAMPLE
PrintSpace (Output () ,User->Ansi_Flag,23);

NOTES
BUGS

SEE ALSO

1.101 dlig.library/PurgeMenu

NAME
PurgeMenu —-- Remove a menu from use.
SYNOPSIS
result = PurgeMenu (port, name)
A0 Al

LONG PurgeMenu (char x,char x)

FUNCTION
Removes a menu from memory.

INPUTS
port —-- Port application is running on.
name —-- Name of menu set to be purged.
RESULT

Error message as defined in resman.h.

EXAMPLE
error = PurgeMenu ("TRO", "MAIN") ;

NOTES
This function is not yet ready for use by third party utilities.

BUGS
SEE ALSO
LockMenu ()

4
FreeMenu ()




DLGLib 80/148

1.102 dig.library/PutChar

NAME
PutChar —- Output a character
SYNOPSIS
PutChar (a, £h)

DO
void PutChar (char, BPTR)

FUNCTION
Sends a character to the specified file.

INPUTS
a —— Character to be output.

fh -- AmigaDOS FileHandle to output character to.

RESULT
none

EXAMPLE
PutChar ("A’,Output ());

NOTES

BUGS

SEE ALSO
GetChar ()
’
ReadChar ()

1.103 dig.library/PutHiLowFPointers

NAME
PutHiLowFPointers —— Write the high and low pointers for a file area
SYNOPSIS
result = PutHiLowFPointers (area,username, low,high, pswd)

DO A0 D1 D2 Al
BOOL PutHiLowFPointers (USHORT, char +, LONG,LONG, char =x)

FUNCTION
Writes the high and low file pointers for a file area.

INPUTS
area —— Number of the area (PVTAREA for a user’s private area)
username -- Underscored name of the user, if writing pointers for a

private area. Otherwise this field should be NULL.

low —-— New low pointer.




DLGLib 81/148

high —-— New high pointer.
pswd —— Password to lock area with when writing pointers file.
RESULT

TRUE 1if operation succeded
FALSE if failure

EXAMPLE
if (!'PutHiLowFPointers (20,NULL, low, high, "pswd"))
printf ("Couldn’t write pointers\n");

NOTES
This function puts a lock on the file area, so do not use it on an
area that is already locked by the same application, or the program
will hang up waiting for itself to release the area so it can lock it.

BUGS
SEE ALSO
GetHiLowFPointers ()

4
PutHiLowPointers ()

4

GetHiLowPointers ()

1.104 dig.library/PutHiLowPointers

NAME
PutHiLowPointers —-— Write the high and low pointers for a message area
SYNOPSIS
result = PutHiLowPointers (area,username, low, high, pswd)

DO AQ D1 D2 Al
BOOL PutHiLowPointers (USHORT, char =x,LONG,LONG,char =)

FUNCTION
Writes the high and low message pointers for a message area.

INPUTS
area —— Number of the area (PVTAREA for a user’s private area)
username —- Underscored name of the user, if writing pointers for
a private area. Otherwise this field should be NULL.
low —-— New low pointer.
high —— New high pointer.
pswd —— Password to lock area with when writing pointers file.
RESULT

TRUE 1f operation succeded




DLGLib

82/148

FALSE if failure

EXAMPLE
if (!'PutHilLowPointers (20,NULL, low,high, "pswd"))
printf ("Couldn’t write pointers\n");

NOTES
This function puts a lock on the message area, so do not use it on an
area that is already locked by the same application, or the program
will hang up waiting for itself to release the area so it can lock it.

BUGS
SEE ALSO

GetHiLowPointers ()

4

GetHiLowFPointers ()

4

PutHiLowFPointers ()

1.105 dlg.library/ReadArea

NAME

ReadArea —-- Get information about a message/file area.
SYNOPSIS

result = ReadArea (area,msgarea, flag)

DO A0 D1
BOOL ReadArea (USHORT, struct Msg_Area *,UBYTE)

FUNCTION
Gets information about a message/file area.

INPUTS
area —— Number of the message/file area.
msgarea —- Msg_Area structure to be filled in (defined in msg.h).
flag -— 1 for a file area, 0 for a message area.

RESULT

TRUE 1if the operation was successful
FALSE if function failed

EXAMPLE
if (!ReadArea (3, &area, 1)) printf("Couldn’t get info for file area 3\n");

NOTES
BUGS

SEE ALSO




DLGLib 83/148

1.106 dig.library/ReadChar

NAME
ReadChar —-- Wait for a character
SYNOPSIS
result = ReadChar (micros)
DO

char ReadChar (ULONG)

FUNCTION
Waits for a character for a specified length of time.

INPUTS
micros —- Number of microseconds to wait for.

RESULT
Character that was read, or 0 if function timed out.

EXAMPLE
c = ReadChar (1000);

NOTES

BUGS

SEE ALSO
GetChar ()
14
PutChar ()

1.107 dig.library/ReadRam

NAME
ReadRam —- Read user’s Ram_File structure
SYNOPSIS
result = ReadRam(RamStruct, port)
A0 Al

BOOL ReadRam(struct Ram_File =*,char x)

FUNCTION
Reads the user’s Ram File structure.

INPUTS
RamStruct —-—- Pointer to Ram_File structure (defined in user.h) to be
filled in.
port —-— Port the user us on.
RESULT

TRUE if operation was successful
FALSE if fuction failed




DLGLib

84/148

EXAMPLE
if (!ReadRam (&Ram, "TRO")) printf ("Unable to read Ram File\n");
NOTES
BUGS
SEE ALSO
WriteRam ()
14
WriteUser ()
14
ReadUser ()

1.108 dig.library/ReadUser

NAME
ReadUser ——- Read a user’s USER_DATA and Ram _File structures
SYNOPSIS
result = ReadUser (RamStruct,UserStruct,port)
A0 Al A2

BOOL ReadUser (struct Ram_File #,struct USER_DATA +,char x)

FUNCTION
Reads a user’s USER_DATA and Ram_File structures.

INPUTS
RamStruct —- Pointer to Ram_File structure (defined in user.h)
filled in.
UserStruct —-- Pointer to USER_DATA structure (defined in user.h)
filled in.
port -— Port the user is on.
RESULT

TRUE 1if operation was successful
FALSE if function failed

EXAMPLE

if (!ReadUser (&Ram, &User, "TRO")) printf ("Unable to read user data\n");

NOTES
BUGS
SEE ALSO
WriteUser ()

4

WriteRam ()

4




DLGLib 85/148

ReadRam ()

1.109 dig.library/ReceiveFile

NAME
ReceiveFile —-- Receives one or more file(s).
SYNOPSIS
result = ReceiveFile (path,protocol, header,UserStruct, RamStruct, port)

AQ Al A2 A3 DO D1
BOOL ReceiveFile (char %, struct Protocol x, struct File_Header =,
struct USER_DATA %, struct Ram_File *, char *)

FUNCTION
Receives one or more file(s).

INPUTS
path —-— Upload path
protocol —— Pointer to a Protocol structure to be used (defined in
file.h)
header —-— Pointer to a file header strucuture with the filename
filled in, if the protocol doesn’t provide one (defined
in file.h).
UserStruct —-- Pointer to USER_DATA structure (defined in user.h).
RamStruct —-- Pointer to Ram_File structure (defined in user.h).
port -— Port the user is on.
RESULT

TRUE 1if operation was successful
FALSE if function failed

EXAMPLE

result = ReceiveFile (path, protocol, header, &User, &Ram, port);
NOTES

Does a very basic file receive. Changes the current CLI directory to

the upload path, translates the protocol’s receive command, and then
executes the receive command.

The application still has to insure that the upload path exists, prompt
the user for the file description(s) and place the files in the proper
area.

BUGS

SEE ALSO

SendFile ()




DLGLib 86/148

1.110 dig.library/ResourceMsg

NAME

ResourceMsg —- Low—level resource manager interface
SYNOPSIS

result = ResourceMsg(rmess)

AQ
LONG ResourceMsg (struct RMMessage x*)

FUNCTION
Provides a low-level interface to the resource manager.

INPUTS
rmess —- RMMessage structure (defined in resman.h).

RESULT
Error message as defined in resman.h.

EXAMPLE
error = ResourceMsg (mymsqg) ;

NOTES
Should not be called directly.

BUGS

SEE ALSO

1.111 dig.library/ResumeTime

NAME
ResumeTime —-- Resume the online clock for a port

SYNOPSIS
ResumeTime (Ram, port)
A0 Al
VOID ResumeTime (struct Ram_File =*,char x)

FUNCTION
Resume the online clock for a port with the number of minutes the

port had left when suspended or up to the port shutdown time.

INPUTS
Ram —— Ram_File structure (defined in user.h).

port —— Port the action is occurring on.

RESULT
none

EXAMPLE
ResumeTime (&Ram, "TRO");




DLGLib

87/148

NOTES
Must be preceeded by a call to
SuspendTime ()
DO NOT ResumeTime ()
without having done a
SuspendTime ()

BUGS
SEE ALSO

SuspendTime ()

1.112 dig.library/ScreenBuffer

NAME
ScreenBuffer —-- Filter a buffer for objectionable language
SYNOPSIS
result = ScreenBuffer (inbuf, outbuf,maxsize, screenfile)

A0 Al DO A2
BOOL ScreenBuffer (char x,char %,ULONG, char x)

FUNCTION
Filters a buffer for bad language.

INPUTS
inbuf —— Buffer to be screened.
outbuf -— Buffer to put screened output into (note that this buffer
may have to be bigger than inbuf).
maxsize —— Maximum size of the translated buffer (to avoid putting
too much in outbuf).
screenfile —- Filename of screen.dat file to be used.
RESULT

TRUE if operation was successful
FALE if function failed.

EXAMPLE
ScreenBuffer (inbuf, outbuf, 1024, "screen.dat");

NOTES
BUGS
SEE ALSO

ScreenMsg ()




DLGLib 88/148

1.113 dlg.library/ScreenMsg

NAME
ScreenMsg —-- Filter a message for bad language
SYNOPSIS
result = ScreenMsg(filename,headerfile,msgtype, area)
A0 Al DO D1

BOOL ScreenMsg (char x,char x,UBYTE,USHORT)

FUNCTION
Screens a message for bad language.

INPUTS
filename —— Filename of the body text of the message (no message
header should yet be in the file).
headerfile —-- Filename of the fidonet-style header of the message.
msgtype —-— Type of the message (as defined in msg.h).
area —— Number of the area the message is going to be placed in
(for getting the correct "screen.dat" file).
RESULT

TRUE if operation was successful
FALSE if function failed.

EXAMPLE
ScreenMsg ("T:TLO.msg","T:TLO.header", PUB_MSG, 20) ;

NOTES
BUGS
SEE ALSO

ScreenBuffer ()

1.114 dig.library/ScreenPath

NAME

ScreenPath —-- Screen a filename for invalid characters
SYNOPSIS

ScreenPath (filename)

A0
void ScreenPath (char x)

FUNCTION
Screens a filename for invalid characters. The characters ’':’", '/’,
T§r, T2 Tk, <’ , '>" and space are replaced with ’_’ (underscore).




DLGLib 89/148

INPUTS
filename —-- Filename to be screened.

RESULT
none

EXAMPLE
ScreenPath (filename) ;

NOTES
BUGS

SEE ALSO

1.115 dlg.library/SDraw_Line

NAME
SDraw_line —-- Draw a line of dashes (’'-’) into a buffer.

SYNOPSIS
SDraw_Line (buffer, size)
A0 DO
void SDraw_Line (char %, UBYTE)

FUNCTION
Draws a line followed by a newline and a null to a string buffer.

INPUTS
buffer —-- buffer to draw line into

size —— size of the line including the newline

RESULT
none

EXAMPLE
SDraw_Line (buffer, 20);

NOTES
BUGS
SEE ALSO

Draw_Line ()

1.116 dig.library/SearchEnd

NAME
SearchkEnd —-- End a file search




DLGLib 90/148

SYNOPSIS
SearchEnd (sc)
AQ
void SearchEnd(struct SearchCookie x)

FUNCTION
Ends a file search begun with
SearchStart ()
INPUTS
sc —— SearchCookie returned by
SearchStart ()
RESULT
none
EXAMPLE

SearchEnd (sc) ;

NOTES

BUGS

SEE ALSO
SearchStart ()
14
SearchNext ()

1.117 dlg.library/SearchNext

NAME
SearchNext —--— Find the next file
SYNOPSIS
result = SearchNext (sc)
A0

char *SearchNext (struct SearchCookie =x*)

FUNCTION
Finds the next file in a disk search.

INPUTS
sc —— SearchCookie returned by
SearchStart ()
RESULT

Pointer to a filename, or NULL if no more files are found.

EXAMPLE

sc = SearchStart ("USER:Joe_Smith", "«");

while (filename = SearchNext (sc)) printf (" [%$s]\n",filename);
NOTES

BUGS




DLGLib 91/148

SEE ALSO
SearchStart ()

4

SearchEnd ()

1.118 dlg.library/SearchStart

NAME
SearchStart -- Begin a disk search, with pattern matching
SYNOPSIS
result = SearchStart (dir,pat)

A0 Al
struct SearchCookie =*SearchStart (char =*,char =)

FUNCTION
Begins a search for files on disk.

INPUTS

dir —-- Directory to search in.

pat —— Pattern to match (’*’ and ’"?’ wildcards supported).
RESULT

SearchCookie structure or
NULL if operation failed

EXAMPLE
sc = SearchStart ("T:","*.user");
NOTES
SearchStart () only gets things going,
SearchNext ()
actually retrieves
the useful information. See
SearchNext ()
for a useful example.
BUGS
SEE ALSO
SearchNext ()
14
SearchEnd ()

1.119 dig.library/SendBulletin

NAME
SendBulletin —-- Place a bulletin on the system




DLGLib 92/148

SYNOPSIS
result = SendBulletin (header,body, pswd)
A0 Al A2
LONG SendBulletin(struct Bulletin x,char x,char x)

FUNCTION
Places a bulletin on the system.

INPUTS
header -- Bulletin structure (defined in bulletin.h).
body —— Null-terminated block of text that makes up the body of the
message. This text should be in standard, fidonet format
as specified by FTS-0001.
pswd —— Password to lock the bulletin area with while the bulletin
is being written.
RESULT

The number the bulletin was assigned, or FALSE if the operation failed

EXAMPLE
num = SendBulletin (&header,bodytext, "Sending Bulletin");

NOTES
BUGS

SEE ALSO

1.120 dlg.library/SendFile

NAME
SendFile —-— Send one or more file(s).
SYNOPSIS
result = SendFile (protocol, path, batch, UserStruct, RamStruct, port)
A0 Al A2 A3 DO D1

BOOL ReceiveFile(struct Protocol x, char =*, char =*,
struct USER_DATA *, struct Ram_File *, char x)

FUNCTION
Receives one or more file(s).

INPUTS
protocol —-— Pointer to a protocol structure to be used
path —— Full path/filename of file to send
batch —— If doing a batch send, this is the Full path/filename
of the batch file. For a single file send, pass as NULL.
UserStruct —-- Pointer to USER_DATA structure (defined in user.h).




DLGLib

93/148

RamStruct —- Pointer to Ram_File structure (defined in user.h).
port -— Port the user is on.
RESULT

TRUE 1if operation was successful
FALSE if function failed

EXAMPLE
result = SendFile (protocol, path, NULL, &User, &Ram, port);

NOTES
Does a very basic file send. Translates the protocol’s single send
command or batch send command, and then executes the send command.
BUGS

SEE ALSO

ReceiveFile ()

1.121 dlg.library/SendCtiMsg

NAME

SendCt1lMsg —-- Low-level handler interface
SYNOPSIS

result = SendCtlMsg (mod, aux_stat, port)

DO D1 AQ
LONG SendCtlMsg (LONG, LONG, char x)

FUNCTION
Provides a low-level interface to the handler. Should not be
called directly.

INPUTS
mod —— Handler command (defined in devices/tpt.h).
aux_stat —-- Command argument
port —— Three-character port name

RESULT

Error message as defined in devices/tpt.h.

EXAMPLE
error = SendCtlMsg(T_ECHO, NULL, "TLO");

NOTES
BUGS

SEE ALSO




DLGLib 94/148

1.122 dig.library/SendPrivateMsg

NAME
SendPrivateMsg —-- Send a private message
SYNOPSIS
result = SendPrivateMsg (header, body,msgtype, pswd, port)

A0 Al DO A2 A3
LONG SendPrivateMsg (struct Msg_Header «,char «,USHORT,char =x,char x)

FUNCTION
Sends a private message to a user on the system.

INPUTS
header -- Msg_Header structure (see msg.h for details).
body —— Null-terminated block of text that makes up the body of the
message. This text should be in standard, fidonet format
as specified by FTS-0001.
msgtype —-- Type of message (as defined in msg.h).
pswd —— Password to lock the area with while the message is being
written.
port —-— Port the application is running on (or NULL, if not
applicable).
RESULT

The number the message was assigned in the area, or FALSE if the
operation failed

EXAMPLE
num = SendPrivateMsg (&header,bodytext, PRI_MSG, "Sending Private",NULL) ;

NOTES
BUGS

At the moment, this function will crash if you don’t allocate enough
memory for DLG to append the origin and tearline to the end of your
message, 1f sent in a Fido or UUCP message base. To be safe, allocate
twice the size of the body file. This will eventually get fixed in a
future version of the library.

SEE ALSO

SendPublicMsg ()

4

KillMsg ()

4

ImportPublicMsg ()

4

SendRawMsg ()




DLGLib

95/148

1.123 dig.library/SendPublicMsg

NAME
SendPublicMsg —-- Send a public message

SYNOPSIS
result = SendPublicMsg (ms, fido, pswd, port)
AQ0 Al A2 A3
LONG SendPublicMsg(struct MsgStruct «,struct fido *,char =*,char x)

FUNCTION
Sends a public message in a DLG message area. I1f the area is a fidonet
area, tear and origin lines will be placed on the message.

INPUTS
ms —-— MsgStruct structure. This structure (defined in msg.h) is
as follows:
struct Msg_Header xheader —-— Fidonet message header structure
(see msg.h for details).
struct Msg_Header *repheader —-—- Header of the message this is a reply
to (or NULL if message is not a
reply) .
unsigned char xbody —— Null-terminated block of text that
makes up the body of the message.
This text should be in standard,
fidonet format as specified by
FTS-0001.
USHORT replyto —— Number of the message this message is
a reply to (or 0 if not a reply).
struct Msg_Area =*areainfo —-— Msg_Area structure of the area to
place the message in. This
structure is obtained by using
ReadArea ()
long flags —— MSG_NOORIGIN if the body text already
has a tear and origin line appended.
fido —- fido structure (defined in misc.h) obtained from the file
"dlgconfig:port/FidoNet.Settings". The fido structure is only
required if the message is being placed in a fidonet aresa,
otherwise NULL.
pswd —-- Password to lock the area with while the message is being
written.
port ——- Port the application is running on (or NULL if not applicable).
RESULT

The number the message was assigned in the area, or FALSE if the




DLGLib

operation failed

EXAMPLE
num =

NOTES

BUGS

At the moment,

message,
twice the size of the body file.

SendPublicMsqg (&ms, &fido, "Sending Public", "TRO");

future version of the library.

SEE ALSO

SendPrivateMsqg ()
14

KillMsg ()

14

ImportPublicMsg ()

4

SendRawMsg ()

1.124 dig.library/SendRawMsg

NAME
SendRawMsg —-- Low-level message sending routine
SYNOPSIS
result SendRawMsg (ms, toname, pswd)

A0 Al A2

LONG SendRawMsg (struct MsgStruct =*,char *,char x)

FUNCTION

INPUTS
ms

toname

pswd

RESULT

The number the message was assigned in the area,

MsgStruct (see
SendPublicMsg ()
for details).

Name of user if message is to be placed in a user’s private

directory.

Password to lock area with while the message is being
written.

or FALSE if the

operation failed

EXAMPLE

num = SendRawMsg (&ms, NULL, "Sending message") ;

this function will crash if you don’t allocate enough
memory for DLG to append the origin and tearline to the end of your
if sent in a Fido or UUCP message base. To be safe, allocate
This will eventually get fixed in a



DLGLib

97/148

NOTES

BUGS

At the moment, this function will crash if you don’t allocate enough
memory for DLG to append the origin and tearline to the end of your

message, if sent in a Fido or UUCP message base.

To be safe, allocate

twice the size of the body file. This will eventually get fixed in a

future version of the library.
SEE ALSO

SendPublicMsg ()

4

KillMsg ()

4

SendPrivateMsg ()

4

ImportPublicMsg ()

1.125 dlg.library/SmartRename

NAME
SmartRename ——- Renames a file in a smart manner.

SYNOPSIS
SmartRename (source, dest)
A0 Al
void SmartRename (char =, char =x*)

FUNCTION
If the destation is the same drive as the source,
Otherwise, copies all of a file into another file
source file. Should the destination drive become
and the DLGConfig:Batch/DriveIsFull.batch exists,

INPUTS
source —-—- Path/Name of source file.
dest —-— Path/Name of destation file.
RESULT
0 = successful
-1 = destation file exists
-2 = error copying file
EXAMPLE
SmartRename ("T:Filel", "T:File2");
NOTES
BUGS

SEE ALSO

the file is renamed.
and then deletes the
full during the copy
it will be executed.




DLGLib 98/148

Copy ()

1.126 dlg.library/SMDate

NAME
SMDate —-- Make a timestamp
SYNOPSIS
SMDate (cur_time, string)
DO AQ

void SMDate (ULONG, char x)

FUNCTION
Makes a timestamp string for the time specified.

INPUTS
cur_time -- Time, as returned by
AmigaTime ()
string —-— Pointer to a buffer to place the timestamp in. An
example timestamp would be "Mon 3 May 93 1:22". The
buffer must be 20 characters long (19 characters plus
null-termination) .
RESULT
none
EXAMPLE
SMDate (
AmigaTime ()
,mytimestamp) ;
NOTES
BUGS
SEE ALSO
MDate ()
4
UnpackTime ()
4
AmigaTime ()

1.127 dig.library/Stricmp

NAME
Stricmp —-- Case insensitive string compare

SYNOPSIS




DLGLib 99/148

result = Stricmp(strl,str2)
AQ Al
LONG Stricmp (char *,char x)

FUNCTION
Does a case insensitive string compare

INPUTS
strl —-— First string.
str2 —-- Second string.
RESULT

<0 if strl is alphanumerically smaller than str2
0 if strl is identical to str2
>0 if strl is alphanumerically greater than str2

EXAMPLE
if (Stricmp ("THIS","this")) printf ("Hmmm, they should be equall\n");

NOTES
Using this function instead of the SAS/C stricmp() will save a lot of
excessive code, 1-4K depending on other functions used.

BUGS

SEE ALSO

Strnicmp ()

1.128 dlg.library/StripPath

NAME

StripPath —-- Get a root filename
SYNOPSIS

result = StripPath (path)

A0
char *«StripPath (char x)

FUNCTION
Gets a root filename from a path/filename.

INPUTS
path —-- Path/filename to find root of.

RESULT
Pointer to the filename part of the given path.

EXAMPLE
filename = StripPath ("work:games/blazemonger");

NOTES

BUGS




DLGLib 100/148

SEE ALSO

1.129 dlg.library/StripSpaces

NAME

StripSpaces ——- Removes leading and trailing spaces from a string
SYNOPSIS

StripSpaces (string)

A0
void StripSpaces (char )

FUNCTION
Removes leading and trailing spaces from a string

INPUTS
string —-- string to be stripped

RESULT

EXAMPLE
StripSpaces (name) ;

NOTES
BUGS

SEE ALSO

1.130 dig.library/Strnicmp

NAME
Strnicmp —-- Case insensitive, fixed-length string compare
SYNOPSIS
result = Strnicmp(strl,str2,n)

A0 Al DO
LONG Strnicmp (char x,char x,USHORT)

FUNCTION
Does a case insensitive, fixed-length string compare

INPUTS

strl —— First string.

str2 -- Second string.

n —— Number of characters to compare
RESULT

<0 if strl is alphanumerically smaller than str2




DLGLib

101/148

0 1if strl is identical to str2
>0 if strl is alphanumerically greater than str2

EXAMPLE
if (Stricmp ("THIS?","this!",4)) printf ("Hmmm, they should be equalln");

NOTES
Using this instead of the SAS/C strnicmp() function will generally
shave 1-4K off your program, depending on other functions utilized.
BUGS

SEE ALSO

Stricmp ()

1.131 dlg.library/Substitute

NAME
Substitute —-- Substitute the translated value for a single ’%’ switch
SYNOPSIS
result = Substitute(cstr, result,User,Ram,port)
A0 Al A2 A3 DO

BOOL Substitute (char %, char %, struct USER_DATA x,
struct Ram_File x, char =)

FUNCTION
Substitutes the translated value for a single ’'%’ switch

INPUTS
cstr —-— String to be translated.
result -- String to put translation into.
User —— USER_DATA structure (defined in user.h).
Ram —-— Ram_File structure (defined in user.h).
port —-— Port the translation is occurring on.
RESULT

TRUE i1f operation was successful
FALSE if function failed

EXAMPLE
Substitute ("UNAME", result, &User, &Ram, "TRO") ;

NOTES
Note the example above. Do NOT include the "%" with the switch text,
just its name.

BUGS

SEE ALSO




DLGLib 102/148

TranslateBuffer ()

1.132 dlg.library/SuspendTime

NAME
SuspendTime -- Suspend the online clock for a port

SYNOPSIS
SuspendTime (Ram, port)
A0 Al
VOID SuspendTime (struct Ram_File «,char x)

FUNCTION
Suspends the online clock for a port up to the port shutdown time.

INPUTS
Ram —-— Ram_File structure (defined in user.h).

port —-— Port the translation is occurring on.

RESULT
none

EXAMPLE
SuspendTime (&§Ram, "TRO");

NOTES
BUGS
SEE ALSO

ResumeTime ()

1.133 dig.library/TBaud

NAME

TBaud —- Set the baud rate for a port
SYNOPSIS

result = TBaud (baud, port)

DO A0
LONG TBaud (LONG, char )

FUNCTION
Sets the baud rate for a port.

INPUTS
baud -- Baud rate.

port —-— Port.




DLGLib 103/148

RESULT
0 if successful
negative if an error occurred

EXAMPLE
error = TBaud (19200, "TRO");

NOTES
BUGS

SEE ALSO

1.134 dig.library/TCheckCarrier

NAME

TCheckCarrier —- Checks for the presence of a carrier
SYNOPSIS

result = TCheckCarrier (port)

A0
LONG TCheckCarrier (char =)

FUNCTION
Checks for the presence of a carrier on a port.

INPUTS
port —-- The port to check

RESULT
TRUE if carrier present

FALSE if no carrier present

EXAMPLE
Carrier = TCheckCarrier ("TRO");

NOTES
BUGS

SEE ALSO

1.135 dlg.library/TColors

NAME

TColors —— Change the colors for a port
SYNOPSIS

result = TColors(colortable,port)

A0 Al
LONG TColors (USHORT =«,char x)




DLGLib 104 /148

FUNCTION
Changes the colors for a port.

INPUTS
colortable ——- Color table suitable for passing to the graphics.library
LoadRGB4 () routine.
port —-— Port.
RESULT

0 1if successful
negative if an error occurred

EXAMPLE
error = TColors (colors, "TRO");

NOTES
BUGS

SEE ALSO

1.136 dlg.library/TCont

NAME
TCont —-- UnFreeze a port
SYNOPSIS
result = TCont (port)
A0

LONG TCont (char =)

FUNCTION
UnFreezes a port frozen with
TFreeze ()
INPUTS
port —-— Port.
RESULT

0 if successful
negative if an error occurred

EXAMPLE
TCont ("TRO") ;

NOTES
BUGS

SEE ALSO




DLGLib 105/148

TFreeze ()

1.137 dig.library/TDevQuery

NAME

TDevQuery ——- Get information about a port
SYNOPSIS

result = TDevQuery (devstruct,port)

A0 Al
LONG TDevQuery (struct tdev_info x,char x)

FUNCTION
Gets information about a port.

INPUTS
devstruct —-- tdev_info structure. The format of this structure is
as follows:
char devname[21] —-— Name of serial device being used.
unsigned char unit —-- Unit number of serial device being used.
long serflags —-— Serial flags being used.
port —-— Port.
RESULT

0 if successful
negative if an error occurred

EXAMPLE
error = TDevQuery (&ds, "TRO") ;

NOTES
BUGS

SEE ALSO

1.138 dig.library/TFreeze

NAME
TFreeze —— Cause port to suspend all I/0
SYNOPSIS
result = TFreeze (port)
AQ

LONG TFreeze (char )

FUNCTION
Causes port to suspend all I/O.




DLGLib 106 /148

INPUTS
port —— Port.

RESULT
0 if successful

negative if an error occurred

EXAMPLE
TFreeze ("TRO") ;

NOTES
BUGS
SEE ALSO

TCont ()

1.139 dlg.library/TGetSer

NAME

TGetSer —-- Get serial informaiton for a port
SYNOPSTIS

result = TGetSer (serstruct,port)

AQ Al
LONG TGetSer (struct TPTSerStuff «%,char x)

FUNCTION
Gets serial information for a port.

INPUTS
serstruct —-- TPTSerStuff structure to be filled in. This structure has
the following format:
struct TIOExtSer *read -- IOMessage for reading.
struct IOExtSer *write —— IOMessage for writing.
port —-— Port.
RESULT

0 if successful
negative if an error occurred

EXAMPLE
error = TGetSer (&ss,"TRO");

NOTES

BUGS

SEE ALSO




DLGLib 107 /148

1.140 dig.library/TGetTitle

NAME
TGetTitle -- Get the screen/window title for a port
SYNOPSIS
result = TGetTitle(title, port)
A0 Al

LONG TGetTitle (char =*,char =«)

FUNCTION
Gets the screen/window title for a port.

INPUTS
title —- String to place title in.
port —— Port.

RESULT

0 if successful
negative i1if an error occurred

EXAMPLE
error = TGetTitle(title, "TRO");

NOTES
BUGS
SEE ALSO

TTitle ()

1.141 dig.library/TimeUntilShutdown

NAME
TimeUntilShutdown —-- Get the number of minutes until a port is shutdown
SYNOPSIS
result = TimeUntilShutdown (port)

A0
LONG TimeUntilShutdown (char =)

FUNCTION
Returns the number of minutes until the port shuts down. If there is no
shutdown event scheduled for the port then 1440 minutes (24 hours) is
returned.

INPUTS
port —-—- DLG Port

RESULT
Minutes till port shutdown or 1440




DLGLib 108 /148

EXAMPLE
minutes = TimeUntilShutdown ("TRO");

NOTES

BUGS

SEE ALSO
SuspendTime ()
14
ResumeTime ()

1.142 dlg.library/TInTrans

NAME
TInTrans ——- Set the input translation table for a port
SYNOPSIS
result = TInTrans (trans,port)
AQ Al

LONG TInTrans (char =x,char x)

FUNCTION
Sets the input translation table for a port.

INPUTS
trans —-—- Array of 256 characters. Input character x will be mapped to
trans[x].
port —— Port.
RESULT

0 if successful
negative if an error occurred

EXAMPLE
error = TInTrans (trans, "TRO");

NOTES
BUGS
SEE ALSO

TOutTrans ()

1.143 dig.library/TKill

NAME
TKill -- Kill a port




DLGLib 109/148

SYNOPSIS
result = TKill (port)
AQ
LONG TKill (char =)

FUNCTION
Kills a port. The user will be hung up on.

INPUTS
port —— Port.

RESULT
0 if successful

negative if an error occurred

EXAMPLE
error = TKill ("TRO");

NOTES
BUGS

SEE ALSO
TRecover ()

1.144 dig.library/TOutTrans

NAME
TOutTrans —— Set the output translation table for a port
SYNOPSIS
result = TOutTrans (trans,port)
AQ Al

LONG TOutTrans (char =*,char «x)

FUNCTION
Sets the output translation table for a port.

INPUTS
trans —-—- Array of 256 characters. Character x will be output is
trans[x].
port —-—- Port.
RESULT

0 1f successful
negative if an error occurred

EXAMPLE
error = TOutTrans (trans, "TRO");

NOTES

BUGS




DLGLib 110/148

SEE ALSO

TInTrans ()

1.145 dig.library/TransferPortLock

NAME
TransferPortLock —-- Change the lock on a port
SYNOPSIS
result = TransferPortLock (port, passwd, newpasswd, reason,pri, bc)

A0 Al A2 A3 DO D1
LONG TransferPortLock (char *,char x,char =*,char =*,char,char x)

FUNCTION
Changes the status of a lock on a port.

INPUTS
port —-— Port to be transferred.
passwd —-— Password port was previously locked with.
newpasswd —— New password to lock port with.
reason —-— Reason for new lock.
pri —-— Priority of new lock.
bc —— Background command for new lock (see LockPort for
more info).
RESULT

Error message as defined in resman.h.

EXAMPLE
error = TransferPortLock ("TRO","OldPasswd", "NewPasswd",
"New Reason",0,"");
NOTES
BUGS
SEE ALSO
LockPort ()
14
FreePort ()
14
ImmedLockPort ()

1.146 dig.library/TranslateBuffer




DLGLib 111/148

NAME
TranslateBuffer —-— Translate ’'%’ switches in a buffer
SYNOPSIS
result = TranslateBuffer (inbuffer,outbuffer,maxsize,User,Ram,port)

AQ Al DO A2 A3 D1
LONG TranslateBuffer (char *,char =*,ULONG, struct USER_DATA x,
struct Ram_File «,char )

FUNCTION
Translates the %’ switches in a buffer.

INPUTS
inbuffer -- Buffer to be translated.
outbuffer —- Buffer to put translation into (may have to be bigger than
inbuffer).
maxsize —— Maximum size of translated buffer (to avoid putting too
many characters in outbuffer).
User —— USER_DATA structure.
Ram —— Ram_File structure.
port —-— Port the user is on.
RESULT

Number of characters placed in outbuffer.

EXAMPLE
numchars = Translate (inbuf, outbuf, 1024, §User, &Ram, "TRO") ;

NOTES
BUGS
SEE ALSO

Substitute ()

1.147 dig.library/TRecover

NAME
TRecover —-- Recover a killed port
SYNOPSIS
result = TRecover (port)
AQ

LONG TRecover (char x)

FUNCTION
Recovers a killed port if for some reason it couldn’t shut down
properly




DLGLib 112/148

INPUTS
port —— Port.

RESULT
0 if successful

negative if an error occurred

EXAMPLE
error = TRecover ("TRO");

NOTES
BUGS
SEE ALSO

TKil1l ()

1.148 dig.library/TScreen

NAME
TScreen —- Open/close a screen for a port
SYNOPSIS
result = TScreen (onoff,scrstruct,port)
DO A0 Al

LONG TScreen (LONG, struct ScrStruct =*,char )

FUNCTION
Opens/Closes a screen for a port.

INPUTS
onoff -— 0 to close, 1 to open
scrstruct —-- ScrStruct structure. This structure (defined in
portconfig.h) is formatted as follows:
short width, height, depth -- Width, height, and depth of the screen.
UBYTE hires —— 1 for hires, 0 for lores.
UBYTE interlace —— 1 for interlaced, 0 for non-interlaced.
char fontname[41] —-— Name of font to be used (case sensitive
and must include ".font").
UBYTE fontsize —-— Point size of font.
UBYTE flags —— DISP_BKGRND if the screen should pop up
behind all other screens.
UWORD colortable[8] —— Color table suitable for passing to the

graphics.library routine LoadRGB4 () .




DLGLib 113/148

port -— Port.
RESULT
0 if successful

negative if an error occurred

EXAMPLE
error = TScreen(l, &scr,colors);

NOTES
BUGS
SEE ALSO

TWindow ()

1.149 dlg.library/TSendBreak

NAME

TSendBreak —-- Send immediate break to a port.
SYNOPSIS

result = TSendBreak (port)

A0
LONG TSendBreak (char )

FUNCTION
Immediately sends a break to the indicated port.

INPUTS
port —— Port to send break to.

RESULT
0 1if successful
negative i1if an error occurred

EXAMPLE
result = TSendBreak ("TRO");

NOTES
Any writes that are in progress to the port are aborted and the break
is sent immediately.

BUGS

SEE ALSO

1.150 dig.library/TSetFlags

NAME
TSetFlags ——- Set handler flags




DLGLib

114/148

SYNOPSIS

result = TSetFlags(flags,port)

DO

A0

LONG TSetFlags (ULONG, char =)

FUNCTION

Sets various handler flags.

INPUTS

flags —— As follows:

1 T_ECHO
2 T_CRLF
4 T_RAW

8 T_RPEND

10 T_WAIT_FOR

20 T_TYPEAHEAD_FULL

40 T_BREAK
80 T_WINDOW

100 T_KILL_ENABLE
200 T_DO_PEND
400 T_KILL_PEND
800 T_SER_TIMEOUT
1000 T_DO_TIMEOUT
2000 T_CTLD
4000 T_PAUSE
8000 T_PAUSED
10000 T_KILLED
20000 T_SCREEN
40000 T_PASS_THRU
80000 T_VERB_PAUSE
100000 T_CWRITE_PEND
200000 T_LINEFREEZE

400000 T_FROZEN

800000 T_WRITE_PEND

port —— Port.

RESULT
new handler flags.

EXAMPLE

@0 N

16

32

64
128

256

512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304

8388608

Enable echoing of characters.
Enable CR/LF conversion.

Enable RAW moded.

Read pending. (Set =xonlyx by
TPT-Handler)

Wait for input. (Set *onlyx by
TPT-Handler)

TypeAhead full. (Set xonly* by
TPT-Handler)

Pass through user-typed ~C signals.
Window is opened. (Set xonlyx* by
TPT_Handler)

Allow handler to send ~C kill signals.
Keep track of pending kills.
Control-C sent. (Set =xonlyx* by
TPT-Handler)

Serial Timeout. (Set *onlyx by
TPT-Handler)

Enable inactivity timeouts.

Pass "D characters through.

Enable ~S*Q pausing.

Port Paused. (Set *onlyx by
TPT-Handler)

Port Killed. (Set xonlyx* by
TPT-Handler)

Screen 1is opened. (Set xonly*x by
TPT-Handler)

Enable ’passthru’ mode.

Display verbose "[PAUSED]" message.
Console write pend. (Set xonlyx* by
TPT-Handler)

Freeze output when user starts typing
in line mode.

Port Frozen. (Set *onlyx by
TPT-Handler)

Serial write pend. (Set xonly* by
TPT-Handler)

flags = TSetFlags (T_ECHO|T_RAW, "TRO") ;




DLGLib 115/148

NOTES
In order to get the current flag settings do:

flags = TSetFlags (0, port);
the flags returned will be the current flags.
BUGS
SEE ALSO

TUnSetFlags ()

1.151 dig.library/TString

NAME

TString —-—- Pretend a user typed a string
SYNOPSIS

result = TString(string, port)

A0 Al
LONG TString(char x,char x)

FUNCTION
Take a string as if it was typed as input by a user on a port.

INPUTS
string —-- String.
port —-— Port.
RESULT

0 if successful
negative if an error occurred

EXAMPLE
error = TString("Pretend user typed this","TRO");

NOTES
BUGS

SEE ALSO

1.152 dig.library/TTimeDelay

NAME
TTimeDelay ——- Set the timeout delay for a port

SYNOPSIS
result = TTimeDelay (delay,port)




DLGLib 116/148

DO AQ
LONG TTimeDelay (LONG, char x)

FUNCTION
Sets the timeout delay for a port.

INPUTS
delay —-- Timeout delay (in 5-second intervals).
port —— Port.

RESULT

0 1if successful
negative if an error occurred

EXAMPLE
error = TTimeDelay (6, "TRO");

NOTES
BUGS

SEE ALSO

1.153 dig.library/TTitle

NAME
TTitle —-- Change the screen/window title for a port
SYNOPSIS
result = TTitle(title, port)
AQ Al

LONG TTitle (char =,char =«)

FUNCTION
Changes the screen/window title for a port.

INPUTS
title ——- New title.
port ——- Port.
RESULT

0 1f successful
negative if an error occurred

EXAMPLE
error = TTitle ("New title","TRO");

NOTES
BUGS

SEE ALSO




DLGLib 117 /148

TGetTitle ()

1.154 dig.library/TUnSetFlags

NAME
TUnSetFlags —— Unset handler flags for a port
SYNOPSIS
result = TUnSetFlags(flags,port)

DO AQ
LONG TUnSetFlags (ULONG, char x)

FUNCTION
Unsets various handler flags for a port.

INPUTS
flags —— See
TSetFlags ()
port —— Port.
RESULT

0 1if successful
negative if an error occurred

EXAMPLE
TUnSetFlags (T_ECHO|T_RAW, "TRO") ;

NOTES
BUGS
SEE ALSO

TSetFlags ()

1.155 dig.library/TWindow

NAME
TWindow -- Open/close a window on a port
SYNOPSIS
result = TWindow (onoff,winstruct, port)
DO AQ Al

LONG TWindow (LONG, struct WinStruct =*,char )

FUNCTION
Opens/closes a window on a port.

INPUTS
onoff -— 0 to close, 1 to open.




DLGLib 118/148

winstruct —-- WinStruct structure. The format of this structure
(defined in portconfig.h) is as follows:

short x, y -- x and y position of upper left corner of
window.

short width, height —-- Width and height of window.

char fontname[41] —— Name of font to be used (case sensitive and
must include ".font").

UBYTE fontsize —-— Point size of font.

UBYTE flags —— DISP_BKGRND if window should be opened up

behind all other windows.
port -— Port.
RESULT
0 if successful

negative if an error occurred

EXAMPLE
error = TWindow (1, &ws, "TRO") ;

NOTES
BUGS
SEE ALSO

TScreen ()

1.156 dlg.library/TWinHeight

NAME

TWinHeight —-- Change the height of the window on a port
SYNOPSIS

result = TWinHeight (height, port)

A0 Al
LONG TWinHeight (char #,char x)

FUNCTION
Changes the height of the window on a port.

INPUTS
height —-- New height of window.
port —-— Port.

RESULT

0 if successful
negative if an error occurred




DLGLib

119/148

EXAMPLE
NOTES
BUGS

SEE ALSO

1.157 dig.library/UnderScore

NAME
UnderScore —-- Underscore a string
SYNOPSIS
UnderScore (string)

A0
void UnderScore (char *)

FUNCTION

Replaces spaces with underscores '_’ in a string.
converting a username to a user’s directory name.

INPUTS
string —-- String to be underscored.

RESULT
none

EXAMPLE
UnderScore ("John Doe");

NOTES
BUGS
SEE ALSO

DeScore ()

1.158 dlg.library/UnpackTime

NAME
UnpackTime -- Unpack a time value

SYNOPSIS
UnpackTime (secs, at)
DO A0
void UnpackTime (ULONG, struct ATime x)

FUNCTION
Unpacks a time value returned from

Useful when




DLGLib 120/ 148

AmigaTime ()
into a more accessible
structure.
INPUTS
secs —— Number of seconds returned by
AmigaTime ()
at —-— Pointer to an ATime structure to be filled in. See misc.h for

the format of this structure.

RESULT
none
EXAMPLE
UnpackTime (
AmigaTime ()
,timestruct);
NOTES
BUGS
SEE ALSO
AmigaTime ()
4
SMDate ()
14
MDate ()

1.159 dig.library/Upper

NAME
Upper —-—- Convert a string to uppercase
SYNOPSIS
Upper (string)
AQ

void Upper (char x)

FUNCTION
Converts a string to uppercase.

INPUTS
string —-- String to be converted

RESULT
none

EXAMPLE
Upper ("uppercase this");

NOTES




DLGLib 121/148

BUGS
SEE ALSO

Capitalize ()

1.160 dig.library/WaitingMail

NAME
WaitingMail -- Add a message to a user’s waiting mail list
SYNOPSIS
result=WaitingMail (toname, from, subject, areanum, areaname, messagenum, port)

AQ Al A2 DO A3 D1 D2
BOOL WaitingMail (char =*,char =,char «,SHORT,char =*,SHORT,char x)

FUNCTION
Adds a message to a user’s waiting mail list and informs them about it.

INPUTS

toname —— User the mail is for.

from —— User the mail is from.

subject —-— Subject of the message.

areanum —— Number of the area the message is in.

areaname —— Name of the area the message is in.

messagenum —— Number of the message.

port —-— Port the application sending the waiting mail is on.
RESULT

TRUE 1if the operation was successful
FALSE if the function failed

EXAMPLE
WaitingMail ("John Doe", "Fred Doe", "Hey Dude!", 23, "General",457,NULL) ;

NOTES
BUGS

SEE ALSO

1.161 dlg.library/WhenEvent




DLGLib 122/148

NAME
WhenEvent —-- Check when an event will next happen
SYNOPSIS
result = WhenEvent (string)
AQ

LONG WhenEvent (char =)

FUNCTION
Checks when a TPTCron event will next happen.

INPUTS
string -- Pattern to search for (’*’ and ’'?’ wildcards supported).

RESULT
Number of seconds until event
-1 if operation failed
EXAMPLE
secs = WhenEvent ("xUUx") ;
if (secs==-1) printf ("WhenEvent failed\n");
else printf ("The next UUCP event will occur in %d seconds\n", secs);
NOTES
BUGS

SEE ALSO

CronEvent ()

1.162 dig.library/WriteEvent

NAME
WriteEvent -- Write a line to a user’s event log
SYNOPSIS
result = WriteEvent (name, buf)
A0 Al

BOOL WriteEvent (char x,char x)

FUNCTION
Writes a line to a user’s event log.

INPUTS

name —-- Name of user.

buf -- String to be written.
RESULT

TRUE 1f operation was successful
FALSE if operation failed

EXAMPLE




DLGLib

123/148

if (!WriteEvent ("John Doe", "Something important happened"))
printf ("Failed to tell John something important\n");

NOTES
BUGS
SEE ALSO

Inform()

1.163 dig.library/WriteLog

NAME

WriteLog ——- Write a event to the system log
SYNOPSIS

result = Writelog(code,person,port,info)

DO A0 Al A2
BOOL WriteLog (UBYTE, char «,char =,char x)

FUNCTION
Writes an event to the system log.

INPUTS
code —-— Event code number (defined in log.h, or user defined).
person —— User the event pertains to.
port -— Port event pertains to.
info —— Comment about the event.
RESULT

TRUE 1f operation was successful
FALSE if operation failed

EXAMPLE
WriteLog (PAGED_SYSOP, "John Doe","TRO", "No Comment") ;

NOTES
BUGS

SEE ALSO

1.164 dig.library/WriteRam

NAME
WriteRam —-— Write a user’s Ram_File structure

SYNOPSIS




DLGLib 124 /148

result = WriteRam(RamStruct,port)
AQ Al
BOOL WriteRam(struct Ram_File *,char =)

FUNCTION

INPUTS
RamStruct —-- Pointer to Ram_File structure to be written.
port —-— Port the user is on.

RESULT

TRUE 1f operation was successful
FALSE if function failed

EXAMPLE
WriteRam (&Ram, "TRO") ;

NOTES

BUGS

SEE ALSO
ReadRam ()
14
WriteUser ()
14
ReadUser ()

1.165 dig.library/WriteUser

NAME
WriteUser —- Write a user’s USER_DATA structure.
SYNOPSIS
result = WriteUser (name,UserStruct)
A0 Al

BOOL WriteUser (char =*,struct USER_DATA x)

FUNCTION
Writes a user’s USER_DATA structure.

INPUTS

name —— User’s name.

UserStruct ——- Pointer to USER_DATA structure to be written.
RESULT

TRUE if operation was successful
FALSE if function failed

EXAMPLE
WriteUser ("John Doe", &User) ;




DLGLib 125/148

NOTES

BUGS

SEE ALSO
ReadUser ()
4
WriteRam ()
14
ReadRam ()

1.166 dig.library/XAFPrintf

NAME
XAFPrintf -- Send formatted output to a file

SYNOPSIS
result = XAFPrintf (User, fh, fmt, argptr)
A0 Al A2 A3
LONG XAFPrintf (struct USER_DATA %,BPTR,char x,void =)

FUNCTION

Does standard ’'C’-style formatting to a file. Should not be called
directly. See

AFPrintf ()
INPUTS
User —-— Optional USER_DATA structure (used for ansi color).
fh —— AmigaDOS file handle to send output to.
fmt —-— Format tring containing text and switches (see any printf ()
documentation for examples of the switches).
argptr —-- Pointer to a memory area (usually the stack) that contains
the arguments to the formatting statements. Note that all
arguments must be long values.
RESULT

The result is the number of characters output.

EXAMPLE
See the file '
format.c
" included with this archive for an interface
function to be used with this routine.

NOTES
Compatiable with most printf () format strings. If the User structure
is passed, the format string may include DLG %a and %b color codes.
There is no floating point support nor is %x formatting supported.

BUGS




DLGLib 126/148

When using

format.c

"'s

AFPrintf ()

to interface to this function, all
arguments are converted to LONGs. A format of "%$hd" should not be
used and will cause invalid results, use "%d" instead. If you call
this function directly, you should use "%hd" for SHORTs and will get
the proper results.

SEE ALSO

XASPrintf ()

4

AFormat ()

4

AFPrintf ()

4

ASPrintf ()

1.167 dlg.library/XASPrintf

NAME
XASPrintf —-- Put formatted output into a string

SYNOPSIS
result = XASPrintf (User, buf, fmt, argptr)
AQ Al A2 A3
LONG XASPrintf (struct USER_DATA #*,char =*,char x,void x)

FUNCTION

Does standard ’'C’-stype formatting to a file. Should not be called
directly. See

ASPrintf ()
INPUTS
User —— Optional USER_DATA structure (used for ansi color).
buf —-— Buffer to send output to.
fmt —-— Format tring containing text and switches (see any printf ()
documentation for examples of the switches).
argptr —— Pointer to a memory area (usually the stack) that contains
the arguments to the formatting statements. Note that all
arguments must be long values.
RESULT

The result is the number of characters output.

EXAMPLE
See the file '
format.c
" included with this archive for an interface




DLGLib

127 /148
function to be used with this routine.
NOTES
Compatable with most printf () format strings. If the User structure
is passed, the format string may include DLG %a and %b color codes.
There is no floating point support nor is %x formatting supported.
BUGS
When using
format.c
"'s
ASPrintf ()
to interface to this function, all
arguments are converted to LONGs. A format of "%hd" should not be
used and will cause invalid results, use "%d" instead. If you call
this function directly, you should use "%$hd" for SHORTs and will get
the proper results.
SEE ALSO
AFormat ()
4
XAFPrintf ()
4
ASPrintf ()
14
AFPrintf ()
1.168 General STRUCTURE functions
These functions streamline the manipulation of structured data <«

objects —--

structures. They have many applications in many areas of DLG, and can be
used to manipulate your own custom data items, too.

~~~~~ AddStruct ()
—-— Add a structure to a file

~~~~~~~~ BinPos ()
—-— Binary search for a structure in a file

~~DeleteStruct ()
—— Delete a structure from a file

~~DLGBinSearch ()
—— Search for a structure in a sorted array

~~~~~ DLGSearch ()
—— Search for a structure in an array

GetFirstStruct ()
—-— Get the first structure from a file

~~~~~ GetStruct ()




DLGLib

128 /148

-— Get a structure from a file

1.169 Formatted 1I/O functions

These I/0 functions perform interaction and (in some cases)
interaction with

files, as well, similar to the standard C functions like printf, putc, etc.

~~~~~~~~ AFormat ()
—— x Low level I/0 routine

~~~~~~~ AFPrintf ()
—-— Send formatted output to a file

~~~~~~~ ASPrintf ()
—— Send formatted output to a string

~~~~~~ BoolQuery ()
—— Asks a yes—-no (Y/N) question
—— Clears the screen

~~~~~ DispBuffer ()
—— Display the contents of a buffer

~~~~~~~ DispForm{()
—— Display a file with DLG ’~’ switches

~~~~~~~ DLGQuery ()
—— Get input from the user intelligently

~~~~~~ Draw_Line ()
—— Draw a line of dashes (-)

~~~~~~~~ GetChar ()
—-— Read a character from a user

~~~~~~~ IntQuery ()
—-— Get an integer value from the user
-— Print a "More (Y/n/=)" prompt

~~~~~~~~~~ Pause ()
—-— Print a "Press Return" prompt

~~~~~ PrintSpace ()
—-— Print spaces intelligently

~~~~~~~~ PutChar ()
—— Output a character

~~~~~~~ ReadChar ()

H




DLGLib 129/148

—-— Wait for a character

~~~~~ SDraw_Line ()
—— Draw a line of dashes (-) into a buffer

~~~~~ Substitute ()
—— Substitute a single "%" switch for its translated
value

TranslateBuffer ()

Q

-— Translate % switches in a buffer

~~~~~~ XAFPrintf ()
-— % Send formatted output to a file

~~~~~~ XASPrintf ()
—— % Put formatted output into a string

Functions marked with a » should not be used directly -- use the higher
level functions that call them.

1.170 Time Functions

These functions facilitate the reading, writing, and use of time

~~~~~~~~ AmigaTime ()
—-— Get the current time in seconds

~~~~~~~~ CronEvent ()
—— Send a message to TpTCron

~~~~~~~~~~~~ MDate ()
—— Make a timestamp of the current time

~~~~~~~ ResumeTime ()
—— resume the online clock for a port

~~~~~~~~~~~ SMDate ()
—— Make a timestamp of a specified time

~~~~~~ SuspendTime ()
—— Suspend the online clock for a port

TimeUntilShutdown ()
—— Get the number of minutes until port is shut down

~~~~~~~ UnpackTime ()
—-— unpack a time value

~~~~~~~~ WhenEvent ()
—— Number of seconds until specified cron event will
occur




DLGLib

130/148

1.171 File Manipulation Functions

File manipulation functions exist for some rather specialized
actions, but
there are also some rather good general purpose functions as well.

—— Copies one file to another

~~~~~ DelDir ()
—— Completely delete dir and its subdirectories

~~~~DirSize ()
—— Number of bytes in a directory

~~~~~ Exists ()
—— Check if file or dir exists

~~~FileCopy ()
—-— Copy all or part of a file

~~~FileSize ()
—-— Get the size of a file

~GetComment ()
—— Get the file’s comment

GetFileDate ()
—-— Get the date of a file

~~~~GetPath ()
—-— Get the path of a file or file area

~~SearchEnd ()
-— End a file search

~SearchNext ()
—— Find the next file

SearchStart ()
-— Start a disk search

SmartRename ()
—— Rename a file intelligently

~~StripPath ()
-— Get a root filename

(_)




DLGLib

131/148

1.172 LOGGING functions

These functions are used in logging actions in various ways.

are
evident on the BBS, others are not so evident

~AppendFile ()
—— Append a timestamped line to a file.
—-— Output a debugging string

~~~~~ Inform()
—— Inform a user of something

WaitingMail ()
—-— Add a message to a user’s waiting mail list

~WriteEvent ()
-— Write a line to a user’s event log

~~~WriteLog ()
—-— Write an event to the system log

1.173 UTILITY functions

Some <=

These functions (mostly string manipulation) are of great general <«

use.

~~~~~~~ ArgParse ()
—-— Parse a string into an array of words

~~~~~ Capitalize ()
-— Capitalize a string

~~~~~~~~ DeScore ()
—— De-underscores a string

DLGPatternMatch ()
—— Check if a string matches a pattern

~~~ScreenBuffer ()
—-— Screen a buffer for inappropriate language

~~~~~ ScreenPath ()
—— screen a path for invalid characters

~~~~~~~~ Stricmp ()
—— Case insensitive string compare

~~~~StripSpaces ()

—-— Removes leading and trailing spaces from a string

DLGLib 132/ 148
~~~~~~~ Strnicmp ()
—— Case insensitive, fixed-length string compare
~~~~~ UnderScore ()
—— Underscore a string
~~~~~~~~~~ Upper ()
—-— Convert a string to uppercase
1.174 BROADCAST Functions
These functions are associated with the Broadcaster, or TpTIBC. —

Most of
these are low-level and should not be used casually. Those functions are
marked with an asterisk.

~~~~~~~ BCGet ()
—-— Get a broadcast message from the resource manager

~~~~~~~ BCMsg ()
-— % Low-level broadcast routine

~~~~~~ BCPend ()
—-— Pend (suspend) automatic printing of broadcast

messages

~~~~BCResume ()
—-— Resume printing of broadcast messages

~~~Broadcast ()
—— Broadcast message

HandleBCMsgs ()
—— Display all pending broadcast messages

1.175 AREA functions

These functions revolve around the use of message and file areas, <+

and
include several much-used functions. Functions marked with a % should not
be casually used.

~~~~~~~ BorrowArea ()
—— Short term lock on an area

~~~~~~~~~~ DispMsg ()
—— Displays the contents of a message

~~~~~~~~ EnterArea ()




DLGLib

133/148

—-— Enter an area (increase user count by 1)

~~~~~~~~~ FreeArea ()
—-— Free a lock on an area

~~~~~ FreeAreaInfo ()
—-— Free ArealInfo structure

~~~~~~ GetArealInfo()
—-— Get information about an area

GetHiLowFPointers ()
—-— Get the high and low pointers for a file area

~GetHiLowPointers ()
—— Get the high and low pointers for a message area

~~~~~~~~ GetOrigin ()
—-— Get the origin address of a message

~~ImportPublicMsqg ()
—-— Import a message into a DLG message base

~~~~~~~~~~ KillMsg ()
—— Delete a message from an area

~~~~~~~~ LeaveArea ()
—— Leave (decrease user count by 1) an area

~~~~~~~~ ListAreas ()
—— Display a list of available areas

~~~~~~~~~ ListSIGS ()
—— Display a list of available SIGs

~~~~~~~~~ LockArea ()
—-— Lock an area for an extended period of time

PutHiLowFPointers ()
—-— Write the high and low pointers for a file area

~PutHiLowPointers ()
—-— Write the high and low pointers for a message
area

~~~~~~~~~ ReadArea ()
-— Get information about an area

~~~~~~ ReceiveFile ()
—— Receive one or more files

~~~~~~~~ ScreenMsqg ()
—— Screen a message for undesireable language

~~~~~ SendBulletin ()
—-— Place a bulletin on the system

DLGLib 134 /148

~~~~~~~~~ SendFile ()
—-— Send one or more files

~~~SendPrivateMsqg ()
-—- Send a private message

~~~~SendPublicMsg ()
—-— Send a public message

~~~~~~~ SendRawMsg ()
—-— Low-level message sending routine

1.176 EXEC functions

These functions fire off external programs or help external <
programs
interface with DLG.

~~~~CallEditor ()
—— Call the user’s editor and edit a file

~~ChainProgram()
—— Sets up DLG to execute another program

~~~DialogBatch ()
-— Execute a DLG batch file

OverlayProgram()
—-— Execute another program using current CLI

~~~ResourceMsqg ()
—-— x Low-level resource manager interface

~~~~SendCt1Msg ()
—-— % Low level handler interface

1.177 SERIAL functions

Take control and manipulate the serial port at your own risk... if <>
you know
what you’re doing, these functions will prove extremely handy. If you’re

unfamiliar with serial I/0, these functions may prove extremely deadly. :-)
~~~~~ ClearLine ()
—— Flush all characters from the input line

~~~~~ DLGGetSer ()
—— Take control of a port’s serial device

DLGProtoStatus ()

DLGLib

135/148

—— Update the status of a transfer

~DLGReleaseSer ()
—— Releas a hold on the serial device

1.178 RESOURCE functions

These functions deal with various resources and such,
menus. The
ones with an asterisk shouldn’t be used casually.

~~~~~ FreeMenu ()
—-— % Free a menu

~FreeResource ()
—-— Free a misc resource

FreeResReport ()
—— Free a resource report

~~~~~~ GetLang ()
—— Get the language information for a port

~GetResReport ()
—-— Get information about many resources

~~~~~ LoadLang ()
—-— Load a language

~~~~~ LockMenu ()
-— x Lock a menu

~LockResource ()
-— Get a lock on a misc resource

~~~~PurgeMenu ()
—-— % Remove a menu from use

1.179  AFPrintf()

NAME
AFPrintf -- Send formatted output to a file

SYNOPSIS
result = AFPrintf (User, fh, fmt,argptr)
AQ Al A2 A3
LONG AFPrintf (struct USER_DATA x,BPTR,char =*,void =x)

FUNCTION
Does standard ’'C’-style formatting to a file.

including <>




DLGLib

INPUTS
User —-— Optional USER_DATA structure (used for ansi color).
fh —— AmigaDOS file handle to send output to.
fmt —-— Format tring containing text and switches (see any printf ()
documentation for examples of the switches).
argptr —-- Pointer to a memory area (usually the stack) that contains
the arguments to the formatting statements. Note that all
arguments must be long values.
RESULT

The result is the number of characters output.

EXAMPLE
numchars

AFPrintf (out,NULL, "This is to file %s\n",outfilename) ;
numchars = AFPrintf (Output (), &userdata, "This is to user %s\n",
username) ;

NOTES
Compatiable with most printf () format strings. If the User structure
is passed, the format string may include DLG %a and %b color codes.
There is no floating point support nor is %$x formatting supported.

BUGS
Arguments are converted to LONGs. A format of "%hd" should not be
used and will cause invalid results, use "%d" instead. If you call

this function directly, you should use "%hd" for SHORTs and will get
the proper results.

SEE ALSO

XAFPrintf ()

4

XASPrintf ()

14

AFormat ()

4

ASPrintf ()

1.180 format.c

/****k*k**********k*k*k*k*k******k***********k*k**********k************************

© copyright 1995-96 by DLG Development
All rights reserved

************************************************************************/

/+ Interface routines for calling the XAFPrintf () and XASPrintf () routines
*% 1in dlg.library. You can compile this with your program or copy the

x+ following routines into your code directly.

*/




DLGLib

137 /148

#include <exec/types.h>
#include <dos/dosextens.h>
#include <dialog/user.h>

#include <proto/dos.h>
#include <proto/dlg.h>

extern struct Library *DLGBase;

LONG __stdargs AFPrintf (struct USER_DATA *User,BPTR fh,char *fmt,...)

{
return (XAFPrintf (User, fh, fmt, (char =) (&fmt+1)));

LONG __stdargs ASPrintf (struct USER_DATA *User,char *str,char xfmt,...)

{
return (XASPrintf (User, str, fmt, (char =) (&fmt+1)));

1.181 ASPrintf()

NAME
ASPrintf —-- Put formatted output into a string

SYNOPSIS
result = ASPrintf (User,buf, fmt, argptr)
AQ Al A2 A3
LONG ASPrintf (struct USER_DATA x,char x,char #*,void =x)

FUNCTION
Does standard ’'C’-stype formatting to a file.

INPUTS
User —-— Optional USER_DATA structure (used for ansi color).
buf —-— Buffer to send output to.
fmt —-— Format tring containing text and switches (see any printf ()
documentation for examples of the switches).
argptr —-- Pointer to a memory area (usually the stack) that contains
the arguments to the formatting statements. Note that all
arguments must be long values.
RESULT

The result is the number of characters output.

EXAMPLE
numchars

ASPrintf (string,NULL, "This is with no user\n");
numchars = ASPrintf (string,userdat,"This is tailored for %s’s
account\n", UserName) ;

NOTES




DLGLib

138/148

Compatable with most printf () format strings. If the User structure
is passed, the format string may include DLG %a and %b color codes.
There is no floating point support nor is %x formatting supported.

BUGS
Arguments are converted to LONGs. A format of "$hd" should not be
used and will cause invalid results, use "%d" instead. If you call

this function directly, you should use "%hd" for SHORTs and will get
the proper results.

SEE ALSO

XASPrintf ()

4

AFormat ()

4

XAFPrintf ()

4

AFPrintf ()

1.182 Using this guide

Using the DLG 1.1 Programming Guide

Included with this guide, you will find a directory called INCLUDE which
includes the header files necessary for developing DLG code correctly. If
you assign INCLUDE: to that directory, various links in the documentation
will take you directly to the specific data structures and flags mentioned
in the autodocs. Alternatively, if you already have an Include: assignment,
you can copy those directories over to that directory.

All functions in this guide require you to open the DLG library before using
them. This is accomplished using the AmigaDOS OpenLibrary () function:

struct Library =DLGBase;

DLGBase = OpenlLibrary("dlg.library",2L);

if (!DLGBase) exit (10);
The above example assumes that you are opening DLG.library version 2 and
that you will exit with an error code of 10 if it fails.
Also, before your program shuts down, you should close the library. Your
program will not crash if you do not, but it is good form to do so, and
keeps the open count of the library accurate.

if (DLGBase) Closelibrary (DLGBase);

Note that this accounts for the library being closed earlier and doesn’t
cause an error if the library is already closed.




DLGLib 139/148

Prototypes

Before using any functions, you need to have declared thier prototype. All
DLG functions are prototyped in proto/dlg.h. #include this file in your
program and your prototyping needs are taken care of.

A note about the include files

The include files provided are for use in development of code for DLG
utilities. The files that most third party developers will be primarily
concerned with are in the include:dialog/ directory.

Although they correctly reflect the structures, variables, and flags used by
DLG, no absolute guarantee of thier accuracy is made. We will make every
effort to insure thier accuracy and will publish updated files as needed.

With few exceptions, the include files may be used for DLG 1.0 development,
as well, but do not assume that everything is the same. One area that is
certainly different is the actual functions —-- there are many new functions
available in the DLG 1.1 library that are not available under DLG 1.0.

Any structure, variable, or flag marked "For internal use" should not be
tampered with or used unless absolutely necessary —-- and if they are,
further compatability is not guaranteed.

Any part of a structure marked as "filler" or "unused" should not be
touched! It may be used in later versions of DLG, thus causing your program
to fail or cause failures.

Final note

While later versions of DLG are available, we will continue to refer to DLG

as version 1.1. No significant changes to the handler, resource manager, oOr

library will take place within the same revision, thus, you can consider DLG
1.16 to be DLG 1.1 for the purposes of this document.

1.183 Distribution

Distribution

This archive may be distributed freely on any electronic bulletin board
system or information service provided that the contents of the archive
remain unchanged with no additions, deletions, or modifications of existing
files.

This archive should be made available to anyone wishing to develop software
for use with DLG Pro 1.1, regardless of whether or not they own the
software.




DLGLib 140/148

1.184 Copyright

Copyright

The contents of this archive are copyright (c) 1995-1996 by DLG Development.
All rights reserved.

Permission is given for use in the development of legitimate software for
use with DLG Pro BBOS or in conjunction with it.

DLG Development reserves the right to suspend this permission on a case by
case basis if needed to protect the interests of its customers.

1.185 Credits

Credits

This programming document would not have been possible without the work of
many individuals, so please forgive me if I leave anyone out, it is purely
unintentional.

o Tom Conroy, Mike Oliphant, and James Hastings-Trew, the original
developers of DLG, who got us to version 1.0 and gave us a great
package!

o Steve Lewis, next keeper of the source and developer of PDQMail and
DLGMail, some very excellent mailer software even after all this time.

o The DLG 1.1 beta team: Mike Moon, Glyn Hughes, Jon Godfrey, Jon Guidry,
John Veldthius, Don Plesky; for thier long suffering and patience with
scrambled hard drives, corrupt memory pointers, and a general pain in
the nether regions.

o Holly Sullivan, for infinite patience with a Significant Other who
seems to be perpetually locked into Code Mode.

And last but not least, by a long shot:

o Bob Stouder, who has performed with brilliance and grace under fire,
stomped bugs with boots of iron, and shown the infinite patience of a
Zen Master as he explained the intricate inner workings of DLG to the
new kid on the block. May your stacks never overflow.

1.186 Contacts

Contacting DLG Development

Our preferred method of contact when dealing with DLG development is in the
FidoNet echo DLG_DEV, available from any of our support sites (see below).
This echo exists for any and all DLG third-party developers who need close




DLGLib

141/148

communication with the authors of the software.

Questions can also be directly mailed to the development team; Jeff
Grimmett, at 1:202/720 either from your own system or routed from one of the
support sites. One may also contact me as
jeff_grimmett@elric.maximumaccess.com.

Support Sites

We have a number of support sites around the world. One of them is bound to
be within reasonable reach of you, or can provide you with a pointer to a
linked system that is close to you.

Please see the enclosed Support.Site document for more information.

Additional information as it happens is available on the DLG web page:
http//www.ald.net/dlg.

1.187 Index

Alphabetical Index of DLG Functions in this guide

__A__

~ActivatePort () ~~~~~
~AddArea ()~~~

~AddStruct () ~~~~~~v

~AmigaTime () ~~~~~~~~
~AppendFile () ~~~~~~~
~ArgParse () ~~~~~~r~~e

~ASPrintf ()~~~




PLELE 142 /148

~BoolQuery () ~~~~~~~~
~BorrowArea () ~~~~~~~

~BroadCast () ~~~~~~~~

~ChainProgram() ~~~~~
~CheckUser () ~~~~~~~~

~ClearLine () ~~~~~~~~

~DeActivatePort ()~~~

~DelArea () ~~~~~~~v~

~DeScore ()~~~
~DialogBatch () ~~~~~~
~DirSize () ~~~~~~m~mn~
~DispBuffer () ~~~~~~~
~DispForm() ~~~~~~r~nw

~DispMsg ()~~~




DLGLib

143/148

~DLGBinSearch () ~~~~~
~DLGGetSer () ~~~~~~~~
~DLGPatternMatch () ~~
~DLGProtoStatus () ~~~
~DLGQuery () ~~~~~~~e
~DLGReleaseSer () ~~~~
~DLGSearch () ~~~~~~~~

~Draw_Line () ~~~~~~~~

~ExistsGlobalArea ()~

~FileCopy () ~~~r~~mm~~
~FileSize () ~~~r~r~r~~~~
~FreeArea () ~~~~~r~r~r~
~FreeArealInfo () ~~~~~
~FreeMenu () ~~~~~~r~~~
~FreePort () ~~~~~~r~r~~
~FreePortInfo () ~~~~~
~FreeResource () ~~~~~

~FreeResReport () ~~~~

~GetArealInfo () ~~~~~~
~GetChar () ~~~~~~~r~~~
~GetComment () ~~~~~~~
~GetComputerType () ~~

~GetDevName () ~~~~~~~




PLELE 144 /148

~GetFileDate () ~~~~~~
~GetFirstStruct ()~~~
~GetHiLowFPointers ()
~GetHiLowPointers () ~
~GetLang () ~~~~~~~mnn
~GetLevel () ~~~~~~m~~
~GetOrigin () ~~~~~~~~
~GetPath () ~~~~~~~m~m~
~GetPortInfo () ~~~~~~
~GetResReport () ~~~~~

~GetStruct () ~~~~~~~

~HandleBCMsgs () ~~~~~

~ImmedLockPort () ~~~~

~ImportPublicMsg () ~~

~KillMsg () ~~~~~mmmnn
L ——
~LeaveArea () ~~~~~~~~
~ListAreas () ~~~~~~~~
~ListPorts () ~~~~~~~~
~ListSIGS () v~~~
~LoadLang () ~~~~~~~~w
~LockArea () ~~~~~~~~

~LockMenu () ~~~~r~~~~e




DLGLib

145/148

~LockPort () ~~~~~~~~

~LockResource () ~~~~~

~NextInGroup () ~~~~~~

~OpenGroup () ~~~~~r~r~~

~OverlayProgram() ~~~

~PrintSpace () ~~~~~~~
~PurgeMenu () ~~~~~~~~
~PutChar () ~~~~~~r~~~~
~PutHiLowFPointers ()

~PutHiLowPointers ()~

~ReadArea () ~~~~~~r~r~~
~ReadChar () ~~~~~~~~~
~ReadRam () ~~~~~~~~n~
~ReadUser () ~~~~~~~~
~ReceiveFile () ~~~~~~
~ResourceMsqg () ~~~~~~

~ResumeTime () ~~~~~~~




L 146 /148

~ScreenBuffer () ~~~~~
~ScreenMsg () ~~~~~~~
~ScreenbPath () ~~~~~~~
~SDraw_Line () ~~~~~~~
~SearchEnd () ~~~~~~~~
~SearchNext () ~~~~~~~
~SearchStart () ~~~~~~
~SendBulletin () ~~~~~
~SendCtl1Msg () ~~~~~~~
~SendFile () ~~~~r~~r~~
~SendPrivateMsg ()~~~
~SendPublicMsg () ~~~~
~SendRawMsg () ~~~~~~~

~SmartRename () ~~~~~~

~Stricmp () ~~~~~v~vmm~
~StripPath () ~~~~~~~~
~StripSpaces () ~~~~~~
~Strnicmp () v~~~
~Substitute () ~~~~~~~

~SuspendTime () ~~~~~~
—_—— T —

~TDevQuery () ~~~~~~~~
~TFreeze () ~~~~~~r~~~

~TGetTitle () ~~~~r~r~~~




PLELE 147 /148

~TimeUntilShutdown ()

~TInTrans () ~~~~~~~~~

~TransferPortLock () ~
~TranslateBuffer () ~~
~TRecover () ~~~~~~r~~~
~TScreen () ~~~~~~~~w~
~TSendBreak () ~~~~~~~
~TSetFlags () ~~~~~~~~
~TString () ~~~~~~~~~~

~TTimeDelay () ~~~~~~~

~TUnSetFlags () ~~~~~~
~TWindow () ~~~~~~~mnn

~TWinHeight () ~~~~~~~

~WaitingMail () ~~~~~~
~WhenEvent () ~~~~~~~~
~WriteEvent () ~~~~~~~
~WriteLog () ~~~~~~~~~
~WriteRam () ~~~~~~~n~~

~WriteUser () ~~~~~~~~




DLGLib 148 /148

~XAFPTIintf () vemnm s

~XASPrintf () ~~~~~~~~




	DLGLib
	DLGLib.Doc
	PORT functions
	USER functions
	dlg.library/ActivatePort
	dlg.library/AddArea
	dlg.library/AddStruct
	dlg.library/AFormat
	dlg.library/Age
	dlg.library/AmigaTime
	dlg.library/AppendFile
	dlg.library/ArgParse
	dlg.library/BCGet
	dlg.library/BCMsg
	dlg.library/BCPend
	dlg.library/BCResume
	dlg.library/BinPos
	dlg.library/BoolQuery
	dlg.library/BorrowArea
	dlg.library/BroadCast
	dlg.library/CallEditor
	dlg.library/Capitalize
	dlg.library/Cat
	dlg.library/CD
	dlg.library/ChainProgram
	dlg.library/CheckUser
	dlg.library/ClearLine
	dlg.library/CloseGroup
	dlg.library/Clr
	dlg.library/Copy
	dlg.library/CronEvent
	dlg.library/DB
	dlg.library/DeActivatePort
	dlg.library/DelArea
	dlg.library/DelDir
	dlg.library/DeleteStruct
	dlg.library/DeScore
	dlg.library/DialogBatch
	dlg.library/DirSize
	dlg.library/DispBuffer
	dlg.library/DispForm
	dlg.library/DispMsg
	dlg.library/DLGBinSearch
	dlg.library/DLGGetSer
	dlg.library/DLGPatternMatch
	dlg.library/DLGProtoStatus
	dlg.library/DLGQuery
	dlg.library/DLGReleaseSer
	dlg.library/DLGSearch
	dlg.library/Draw_Line
	dlg.library/EnterArea
	dlg.library/Exists
	dlg.library/ExistsGlobalArea
	dlg.library/FileCopy
	dlg.library/FileSize
	dlg.library/FreeArea
	dlg.library/FreeAreaInfo
	dlg.library/FreeMenu
	dlg.library/FreePort
	dlg.library/FreePortInfo
	dlg.library/FreeResource
	dlg.library/FreeResReport
	dlg.library/GetAreaInfo
	dlg.library/GetChar
	dlg.library/GetComment
	dlg.library/GetComputerType
	dlg.library/GetDevName
	dlg.library/GetFileDate
	dlg.library/GetFirstStruct
	dlg.library/GetHiLowFPointers
	dlg.library/GetHiLowPointers
	dlg.library/GetLang
	dlg.library/GetLevel
	dlg.library/GetOrigin
	dlg.library/GetPath
	dlg.library/GetPortInfo
	dlg.library/GetResReport
	dlg.library/GetStruct
	dlg.library/HandleBCMsgs
	dlg.library/ImmedLockPort
	dlg.library/ImportPublicMsg
	dlg.library/Inform
	dlg.library/IntQuery
	dlg.library/KillMsg
	dlg.library/LeaveArea
	dlg.library/ListAreas
	dlg.library/ListPorts
	dlg.library/ListSIGS
	dlg.library/LoadLang
	dlg.library/LockArea
	dlg.library/LockMenu
	dlg.library/LockPort
	dlg.library/LockResource
	dlg.library/LogOut
	dlg.library/MDate
	dlg.library/More
	dlg.library/NextInGroup
	dlg.library/OpenGroup
	dlg.library/OverlayProgram
	dlg.library/Pause
	dlg.library/PrintSpace
	dlg.library/PurgeMenu
	dlg.library/PutChar
	dlg.library/PutHiLowFPointers
	dlg.library/PutHiLowPointers
	dlg.library/ReadArea
	dlg.library/ReadChar
	dlg.library/ReadRam
	dlg.library/ReadUser
	dlg.library/ReceiveFile
	dlg.library/ResourceMsg
	dlg.library/ResumeTime
	dlg.library/ScreenBuffer
	dlg.library/ScreenMsg
	dlg.library/ScreenPath
	dlg.library/SDraw_Line
	dlg.library/SearchEnd
	dlg.library/SearchNext
	dlg.library/SearchStart
	dlg.library/SendBulletin
	dlg.library/SendFile
	dlg.library/SendCtlMsg
	dlg.library/SendPrivateMsg
	dlg.library/SendPublicMsg
	dlg.library/SendRawMsg
	dlg.library/SmartRename
	dlg.library/SMDate
	dlg.library/Stricmp
	dlg.library/StripPath
	dlg.library/StripSpaces
	dlg.library/Strnicmp
	dlg.library/Substitute
	dlg.library/SuspendTime
	dlg.library/TBaud
	dlg.library/TCheckCarrier
	dlg.library/TColors
	dlg.library/TCont
	dlg.library/TDevQuery
	dlg.library/TFreeze
	dlg.library/TGetSer
	dlg.library/TGetTitle
	dlg.library/TimeUntilShutdown
	dlg.library/TInTrans
	dlg.library/TKill
	dlg.library/TOutTrans
	dlg.library/TransferPortLock
	dlg.library/TranslateBuffer
	dlg.library/TRecover
	dlg.library/TScreen
	dlg.library/TSendBreak
	dlg.library/TSetFlags
	dlg.library/TString
	dlg.library/TTimeDelay
	dlg.library/TTitle
	dlg.library/TUnSetFlags
	dlg.library/TWindow
	dlg.library/TWinHeight
	dlg.library/UnderScore
	dlg.library/UnpackTime
	dlg.library/Upper
	dlg.library/WaitingMail
	dlg.library/WhenEvent
	dlg.library/WriteEvent
	dlg.library/WriteLog
	dlg.library/WriteRam
	dlg.library/WriteUser
	dlg.library/XAFPrintf
	dlg.library/XASPrintf
	General STRUCTURE functions
	Formatted I/O functions
	Time Functions
	File Manipulation Functions
	LOGGING functions
	UTILITY functions
	BROADCAST Functions
	AREA functions
	EXEC functions
	SERIAL functions
	RESOURCE functions
	AFPrintf()
	format.c
	ASPrintf()
	Using this guide
	Distribution
	Copyright
	Credits
	Contacts
	Index


